RESUMO
Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1-mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice-selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)-based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5-5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.
RESUMO
Image compression systems that exploit the properties of the human visual system have been studied extensively over the past few decades. For the JPEG2000 image compression standard, all previous methods that aim to optimize perceptual quality have considered the irreversible pipeline of the standard. In this work, we propose an approach for the reversible pipeline of the JPEG2000 standard. We introduce a new methodology to measure visibility of quantization errors when reversible color and wavelet transforms are employed. Incorporation of the visibility thresholds using this methodology into a JPEG2000 encoder enables creation of scalable codestreams that can provide both near-threshold and numerically lossless representations, which is desirable in applications where restoration of original image samples is required. Most importantly, this is the first work that quantifies the bitrate penalty incurred by the reversible transforms in near-threshold image compression compared to the irreversible transforms.
RESUMO
Background Suturing requires repeated practice with guidance to prevent skill deterioration; however, guidance is often limited by expert availability. There is evidence that augmented reality (AR) may assist procedural skill acquisition among learners. This study examines the use of an AR suture guidance application to assist the independent practice of suturing. Methodology A novel suture guidance application was designed for the Microsoft HoloLens. The guidance system included a calibration system and holograms that projected over a suture pad in a stepwise manner. To assess the application, 30 medical students were recruited and randomly assigned to two groups. The control group (n = 16) was given 30 minutes of independent suture practice, while the experimental group (n = 14) utilized the suture guidance application. Both groups completed a pre- and post-test wound closure assessment. After the post-test, the control group trialed the suture guidance application. All participants completed a feedback survey on the application. Statistical analysis was completed using Stata (StataCorp., College Station, TX, USA) with paired Student's t-tests and Welch's t-tests with a significance of 95%. Results Both groups demonstrated a significant improvement in total time and time per stitch during the post-test. Additionally, comparing pre- and post-test assessments in the experimental group revealed a significant improvement in the total number of stitches (p = 0.007), the ratio of bisecting stitches (p = 0.02), and the symmetry of stitch bite (p = 0.03). The feedback survey supported the application for guiding suture placement and spacing. Participants identified limitations in the hologram stability and neck positioning. Conclusions This study suggests the potential to use AR to facilitate the independent practice of wound closure within simulation environments.
RESUMO
PURPOSE: Targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) interaction has led to durable responses in fewer than half of patients with mismatch repair-deficient (MMR-d) advanced colorectal cancers. Immune contexture, including spatial distribution of immune cells in the tumor microenvironment (TME), may predict immunotherapy outcome. EXPERIMENTAL DESIGN: Immune contexture and spatial distribution, including cell-to-cell distance measurements, were analyzed by multiplex immunofluorescence (mIF) in primary colorectal cancers with d-MMR (N = 33) from patients treated with anti-PD-1 antibodies. By digital image analysis, density, ratio, intensity, and spatial distribution of PD-L1, PD-1, CD8, CD3, CD68, LAG3, TGFßR2, MHC-I, CD14, B2M, and pan-cytokeratin were computed. Feature selection was performed by regularized Cox regression with LASSO, and a proportional hazards model was fitted to predict progression-free survival (PFS). RESULTS: For predicting survival among patients with MMR-d advanced colorectal cancer receiving PD-1 blockade, cell-to-cell distance measurements, but not cell densities or ratios, achieved statistical significance univariately. By multivariable feature selection, only mean number of PD-1+ cells within 10 µm of a PD-L1+ cell was significantly predictive of PFS. Dichotomization of this variable revealed that those with high versus low values had significantly prolonged PFS [median not reached (>83 months) vs. 8.5 months (95% confidence interval (95% CI), 4.7-NR)] with a median PFS of 28.4 months for all patients [adjusted HR (HRadj) = 0.14; 95% CI, 0.04-0.56; P = 0.005]. Expression of PD-1 was observed on CD8+ T cells; PD-L1 on CD3+ and CD8+ T lymphocytes, macrophages (CD68+), and tumor cells. CONCLUSIONS: In d-MMR colorectal cancers, PD-1+ to PD-L1+ receptor to ligand proximity is a potential predictive biomarker for the effectiveness of PD-1 blockade.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Reparo de Erro de Pareamento de DNA/genética , Ligantes , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Biomarcadores Tumorais , Microambiente Tumoral/genéticaRESUMO
Objectives Emergency medicine (EM) residents are required to perform a cricothyrotomy during training as per the Accreditation Council for Graduate Medical Education (ACGME) guidelines. Cricothyrotomy is a rare procedure, comprising 0.45% of emergency department airway management procedures. Procedural competence in utilizing a realistic trainer is of utmost importance. We have developed a cricothyrotomy trainer using a fused deposition modeling (FDM) three-dimensional (3D) printer and innovative bleeding tissue to enhance fidelity. We aim to evaluate the trainer's realism. Methods Implementation occurred during a difficult airway educational lab for EM residents in April 2018. Participants completed anonymous written surveys after performing a cricothyrotomy on the trainer. The survey evaluated the realism of the trainer and compared it to other available models by utilizing five-point visual analog scales (VAS). The participants rated their comfort level in performing the procedure pre- and post-educational lab on a five-point VAS. Demographic data included postgraduate year, prior clinical cricothyrotomy experience as a primary operator versus as an assistant, and previous trainer experience. The survey included open-response suggestions for trainer improvement. Results Forty-three EM residents completed the survey (82.7%, 43/52). The mean realism rating of the trainer was 3.81 (95% CI = 3.54-4.1). The participants reported previous training on cadaver (62.8%, 27/43), porcine (46.5%, 20/43), and manikin (67.4%, 29/43) models prior to using this trainer. The bleeding cricothyrotomy trainer was rated higher than other models (4.45, 95% CI = 4.28-4.63). Participants noted improved comfort with performing the cricothyrotomy after the educational lab (average improvement of 1.23±0.75). Participants specifically commented on the realism of the bleeding and skin texture; however, they also recommended a reduction in the size of the cricothyroid membrane space. Conclusion The innovative bleeding cricothyrotomy trainer has greater fidelity and reported superiority when compared to other commonly used nonbleeding models. This trainer provides a more advanced platform to teach an infrequent yet critical procedural skill to emergency medicine residents.