Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636680

RESUMO

BACKGROUND & AIMS: High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS: Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS: High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS: PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.

2.
Mol Ther ; 32(2): 540-555, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38213030

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) lack cross-reactivity between SARS-CoV species and variants and fail to mediate long-term protection against infection. The maintained protection against severe disease and death by vaccination suggests a role for cross-reactive T cells. We generated vaccines containing sequences from the spike or receptor binding domain, the membrane and/or nucleoprotein that induced only T cells, or T cells and NAbs, to understand their individual roles. In three models with homologous or heterologous challenge, high levels of vaccine-induced SARS-CoV-2 NAbs protected against neither infection nor mild histological disease but conferred rapid viral control limiting the histological damage. With no or low levels of NAbs, vaccine-primed T cells, in mice mainly CD8+ T cells, partially controlled viral replication and promoted NAb recall responses. T cells failed to protect against histological damage, presumably because of viral spread and subsequent T cell-mediated killing. Neither vaccine- nor infection-induced NAbs seem to provide long-lasting protective immunity against SARS-CoV-2. Thus, a more realistic approach for universal SARS-CoV-2 vaccines should be to aim for broadly cross-reactive NAbs in combination with long-lasting highly cross-reactive T cells. Long-lived cross-reactive T cells are likely key to prevent severe disease and fatalities during current and future pandemics.


Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinas Virais
3.
Mol Ther ; 31(2): 387-397, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184852

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is widely distributed throughout Africa, the Middle East, Southern Asia, and Southern and Eastern Europe. Spread by Hyalomma ticks or by contact with infected animals, CCHF begins non-specifically but can rapidly progress to severe, sometimes fatal, disease. Due to the non-specific early symptoms and often unrecognized infections, patients often present to healthcare systems exhibiting later stages of disease, when treatment is limited to supportive care. Consequently, simple vaccines are critically needed to protect populations at risk of CCHFV infection. Currently, there are no widely approved vaccines for CCHFV. We have previously reported significant efficacy of a three-dose DNA-based vaccination regimen for CCHFV in cynomolgus macaques (Macaca fasicularis). Here, we show that in cynomolgus macaques, plasmid-expressed CCHFV nucleoprotein (NP) and glycoprotein precursor (GPC) antigens elicit primarily humoral and cellular immunity, respectively. We found that a two-dose vaccination regimen with plasmids expressing the NP and GPC provides significant protection against CCHFV infection. Studies investigating vaccinations with either antigen alone showed that plasmid-expressed NPs could also confer protection. Cumulatively, our data show that this vaccine confers robust protection against CCHFV and suggest that both humoral and cellular immunity contribute to optimal vaccine-mediated protection.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Vacinas de DNA , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/prevenção & controle , Febre Hemorrágica da Crimeia/diagnóstico , Macaca , Vacinação
4.
Gut ; 72(6): 1186-1195, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35977815

RESUMO

OBJECTIVE: Chronic HBV/HDV infections are a major cause of liver cancer. Current treatments can only rarely eliminate HBV and HDV. Our previously developed preS1-HDAg immunotherapy could induce neutralising antibodies to HBV in vivo and raise HBV/HDV-specific T-cells. Here, we further investigate if a heterologous prime-boost strategy can circumvent T-cell tolerance and preclude HDV superinfection in vivo. DESIGN: A DNA prime-protein boost strategy was evaluated for immunogenicity in mice and rabbits. Its ability to circumvent T-cell tolerance was assessed in immunocompetent hepatitis B surface antigen (HBsAg)-transgenic mice. Neutralisation of HBV and HDV was evaluated both in vitro and in immunodeficient human-liver chimeric mice upon adoptive transfer. RESULTS: The prime-boost strategy elicits robust HBV/HDV-specific T-cells and preS1-antibodies that can effectively prevent HBV and HDV (co-)infection in vitro and in vivo. In a mouse model representing the chronic HBsAg carrier state, active immunisation primes high levels of preS1-antibodies and HDAg-specific T-cells. Moreover, transfer of vaccine-induced antibodies completely protects HBV-infected human-liver chimeric mice from HDV superinfection. CONCLUSION: The herein described preS1-HDAg immunotherapy is shown to be immunogenic and vaccine-induced antibodies are highly effective at preventing HBV and HDV (super)infection both in vitro and in vivo. Our vaccine can complement current and future therapies for the control of chronic HBV and HDV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Superinfecção , Humanos , Camundongos , Animais , Coelhos , Antígenos da Hepatite delta , Antígenos de Superfície da Hepatite B , Hepatite B Crônica/prevenção & controle , Superinfecção/prevenção & controle , Vírus Delta da Hepatite/genética , Hepatite B/prevenção & controle , Vírus da Hepatite B/genética , Anticorpos Antivirais , Camundongos Transgênicos
5.
J Virol ; 96(3): e0156821, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34817199

RESUMO

Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo hemorrhagic fever virus (CCHFV), is on the World Health Organizations' list of prioritized diseases and pathogens. With global distribution, high fatality rate, and no approved vaccine or effective treatment, CCHF constitutes a threat against global health. In the current study, we demonstrate that vaccination with nucleoside-modified mRNA-lipid nanoparticles (mRNA-LNP), encoding for the CCHFV nucleoprotein (N) or glycoproteins (GcGn) protect IFNAR-/- mice against lethal CCHFV infection. In addition, we found that both mRNA-LNP induced strong humoral and cellular immune responses in IFNAR-/- and immunocompetent mice and that neutralizing antibodies are not necessary for protection. When evaluating immune responses induced by immunization including CCHFV Gc and Gn antigens, we found the Gc protein to be more immunogenic compared with the Gn protein. Hepatic injury is prevalent in CCHF and contributes to the severity and mortality of the disease in humans. Thus, to understand the immune response in the liver after infection and the potential effect of the vaccine, we performed a proteomic analysis on liver samples from vaccinated and control mice after CCHFV infection. Similar to observations in humans, vaccination affected the metabolic pathways. In conclusion, this study shows that a CCHFV mRNA-LNP vaccine, based on viral nucleo- or glycoproteins, mediate protection against CCHFV induced disease. Consequently, genetic immunization is an attractive approach to prevent disease caused by CCHFV and we believe we have necessary evidence to bring this vaccine platform to the next step in the development of a vaccine against CCHFV infection. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is a zoonotic pathogen causing Crimean-Congo hemorrhagic fever (CCHF), a severe fever disease. CCHFV has a wide distribution and is endemic in several areas around the world. Cases of CCHF are also being reported in new areas, indicating an expansion of the disease, which is of high concern. Dispersion of the disease, high fatality rate, and no approved vaccine makes CCHF a threat to global health. The development of a vaccine is thus of great importance. Here we show 100% protection against lethal CCHFV infection in mice immunized with mRNA-LNP encoding for different CCHFV proteins. The vaccination showed both robust humoral and cellular immunity. mRNA-LNP vaccines combine the ability to induce an effective immune response, the safety of a transient carrier, and the flexibility of genetic vaccines. This and our results from the current study support the development of a mRNA-LNP based vaccine against CCHFV.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Receptor de Interferon alfa e beta/deficiência , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Feminino , Ensaios de Triagem em Larga Escala , Imunização , Imunogenicidade da Vacina , Lipossomos , Camundongos , Camundongos Knockout , Nanopartículas , Proteômica/métodos , Vacinação
6.
Mol Cell Proteomics ; 20: 100159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34619366

RESUMO

Viruses hijack host metabolic pathways for their replicative advantage. In this study, using patient-derived multiomics data and in vitro infection assays, we aimed to understand the role of key metabolic pathways that can regulate severe acute respiratory syndrome coronavirus-2 reproduction and their association with disease severity. We used multiomics platforms (targeted and untargeted proteomics and untargeted metabolomics) on patient samples and cell-line models along with immune phenotyping of metabolite transporters in patient blood cells to understand viral-induced metabolic modulations. We also modulated key metabolic pathways that were identified using multiomics data to regulate the viral reproduction in vitro. Coronavirus disease 2019 disease severity was characterized by increased plasma glucose and mannose levels. Immune phenotyping identified altered expression patterns of carbohydrate transporter, glucose transporter 1, in CD8+ T cells, intermediate and nonclassical monocytes, and amino acid transporter, xCT, in classical, intermediate, and nonclassical monocytes. In in vitro lung epithelial cell (Calu-3) infection model, we found that glycolysis and glutaminolysis are essential for virus replication, and blocking these metabolic pathways caused significant reduction in virus production. Taken together, we therefore hypothesized that severe acute respiratory syndrome coronavirus-2 utilizes and rewires pathways governing central carbon metabolism leading to the efflux of toxic metabolites and associated with disease severity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity.


Assuntos
Proteínas Sanguíneas/metabolismo , COVID-19/etiologia , SARS-CoV-2/fisiologia , Adulto , Idoso , Sistema y+ de Transporte de Aminoácidos/sangue , Aminoácidos/sangue , Biomarcadores/sangue , Proteínas Sanguíneas/análise , COVID-19/metabolismo , COVID-19/virologia , Carboidratos/sangue , Estudos de Casos e Controles , Transportador de Glucose Tipo 1/sangue , Hospitalização , Humanos , Imunofenotipagem , Manose/sangue , Lectina de Ligação a Manose/sangue , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Replicação Viral
7.
J Immunol ; 205(9): 2437-2446, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878912

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and has since become a global pandemic. Pathogen-specific Abs are typically a major predictor of protective immunity, yet human B cell and Ab responses during COVID-19 are not fully understood. In this study, we analyzed Ab-secreting cell and Ab responses in 20 hospitalized COVID-19 patients. The patients exhibited typical symptoms of COVID-19 and presented with reduced lymphocyte numbers and increased T cell and B cell activation. Importantly, we detected an expansion of SARS-CoV-2 nucleocapsid protein-specific Ab-secreting cells in all 20 COVID-19 patients using a multicolor FluoroSpot Assay. Out of the 20 patients, 16 had developed SARS-CoV-2-neutralizing Abs by the time of inclusion in the study. SARS-CoV-2-specific IgA, IgG, and IgM Ab levels positively correlated with SARS-CoV-2-neutralizing Ab titers, suggesting that SARS-CoV-2-specific Ab levels may reflect the titers of neutralizing Abs in COVID-19 patients during the acute phase of infection. Last, we showed that IL-6 and C-reactive protein serum concentrations were higher in patients who were hospitalized for longer, supporting the recent observations that IL-6 and C-reactive protein could be used as markers for COVID-19 severity. Altogether, this study constitutes a detailed description of clinical and immunological parameters in 20 COVID-19 patients, with a focus on B cell and Ab responses, and describes tools to study immune responses to SARS-CoV-2 infection and vaccination.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Hospitalização , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Adulto , Idoso , Biomarcadores/sangue , Proteína C-Reativa/análise , COVID-19 , Estudos de Coortes , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Interleucina-6/sangue , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/virologia , SARS-CoV-2 , Suécia/epidemiologia
8.
J Infect Dis ; 223(1): 128-138, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31994701

RESUMO

BACKGROUND: Chronic hepatitis B and D virus (HBV/HDV) infections can cause cancer. Current HBV therapy using nucleoside analogues (NAs) is life-long and reduces but does not eliminate the risk of cancer. A hallmark of chronic hepatitis B is a dysfunctional HBV-specific T-cell response. We therefore designed an immunotherapy driven by naive healthy T cells specific for the HDV antigen (HDAg) to bypass the need for HBV-specific T cells in order to prime PreS1-specific T cells and PreS1 antibodies blocking HBV entry. METHODS: Ten combinations of PreS1 and/or HDAg sequences were evaluated for induction of PreS1 antibodies and HBV- and HDV-specific T cells in vitro and in vivo. Neutralization of HBV by PreS1-specific murine and rabbit antibodies was evaluated in cell culture, and rabbit anti-PreS1 were tested for neutralization of HBV in mice repopulated with human hepatocytes. RESULTS: The best vaccine candidate induced T cells to PreS1 and HDAg, and PreS1 antibodies blocking HBV entry in vitro. Importantly, adoptive transfer of PreS1 antibodies prevented, or modulated, HBV infection after a subsequent challenge in humanized mice. CONCLUSIONS: We here describe a novel immunotherapy for chronic HBV/HDV that targets viral entry to complement NAs and coming therapies inhibiting viral maturation.


Assuntos
Vírus da Hepatite B/imunologia , Hepatite B Crônica/tratamento farmacológico , Hepatite D Crônica/tratamento farmacológico , Vírus Delta da Hepatite/imunologia , Internalização do Vírus/efeitos dos fármacos , Animais , Feminino , Vacinas contra Hepatite B , Hepatócitos/efeitos dos fármacos , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Coelhos
9.
Gut ; 67(8): 1525-1535, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28646094

RESUMO

OBJECTIVE: HCV is characterised by its ability to establish chronic infection in hepatocytes and to replicate in the presence of an inflammation. We mimicked this situation in vivo in immune-competent mice by syngeneic transplantation of HCV replicon-containing mouse hepatoma cells. DESIGN: A total of 5 million H-2b positive Hep56.1D cells, carrying a subgenomic genotype (gt) 2a replicon (HCV replicon cells) or stably expressing comparable levels of the HCV NS3/4A protease/helicase complex (NS3/4A hepatoma cells), were injected subcutaneously into syngeneic H-2b-restricted mice. Kinetics of tumour growth, HCV RNA replication levels and HCV-specific immune responses were monitored. For immune monitoring, new H-2b-restricted cytotoxic T cell epitopes within the gt2a NS3/4A region were mapped. Immune mice were generated by DNA-based vaccination. RESULTS: HCV replicon and NS3/4A hepatoma cells generated solid tumours in vivo. Similar to what is seen in human HCV infection did HCV RNA replicate in the presence of inflammation. NS3/4A-specific CD8+ T cells seemed to transiently reduce HCV RNA levels. Both CD4+ and CD8+ T cells were required for protection against tumour growth. Vaccine-induced NS3/4A(gt2a)-specific T cells protected against HCV replicon tumours in wild-type, but not in HCV NS3/4A(gt1a)-transgenic mice with dysfunctional HCV-specific T cells. Importantly, as in human HCV infection, HCV replicon cells neither primed nor boosted a strong NS3/4A-specific T cell response. CONCLUSION: Syngeneic transplantation of mouse HCV replicon cells into immune-competent animals mirrors many in vivo events in humans. This system is versatile and can be applied to any genetically modified H-2b-restricted mouse strain.


Assuntos
Carcinoma Hepatocelular/patologia , Transplante de Células , Modelos Animais de Doenças , Hepacivirus , Hepatite C/etiologia , Hepatócitos/transplante , Animais , Hepatócitos/patologia , Camundongos , Replicon , Serina Proteases , Proteínas não Estruturais Virais
11.
J Immunol ; 192(4): 1671-80, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24442435

RESUMO

Ribavirin has proven to be a key component of hepatitis C therapies both involving IFNs and new direct-acting antivirals. The hepatitis C virus-mediated interference with intrahepatic immunity by cleavage of mitochondrial antiviral signaling protein (MAVS) and T cell protein tyrosine phosphatase (TCPTP) suggests an avenue for compounds that may counteract these effects. We therefore studied the effects of ribavirin, with or without inhibition of the nonstructural (NS)3/4A protease, on intrahepatic immunity. The intrahepatic immunity of wild-type and NS3/4A-transgenic mice was determined by Western blot, ELISA, flow cytometry, and survival analysis. Various MAVS or TCPTP constructs were injected hydrodynamically to study their relevance. Ribavirin pretreatment was performed in mice expressing a functional or inhibited NS3/4A protease to analyze its effect on NS3/4A-mediated changes. Intrahepatic NS3/4A expression made mice resistant to TNF-α-induced liver damage and caused an alteration of the intrahepatic cytokine (IFN-γ and IL-10) and chemokine (CCL3, CCL17, CCL22, CXCL9, and CXCL11) profiles toward an anti-inflammatory state. Consistent with this, the number of intrahepatic Th1 cells and IFN-γ(+) T cells in NS3/4A-transgenic mice decreased, whereas the amount of Th2 cells increased. These effects could be reversed by injection of uncleavable TCPTP but not uncleavable MAVS and were absent in a mouse expressing a nonfunctional NS3/4A protease. Importantly, the NS3/4A-mediated effects were reversed by ribavirin treatment. Thus, cleavage of TCPTP by NS3/4A induces a shift of the intrahepatic immune response toward a nonantiviral Th2-dominated immunity. These effects are reversed by ribavirin, supporting that ribavirin complements the effects of direct-acting antivirals as an immunomodulatory compound.


Assuntos
Hepacivirus/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Ribavirina/farmacologia , Proteínas não Estruturais Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antivirais/farmacologia , Diferenciação Celular/efeitos dos fármacos , Quimiocina CCL17/biossíntese , Quimiocina CCL22/biossíntese , Quimiocina CCL3/biossíntese , Quimiocina CXCL11/biossíntese , Quimiocina CXCL9/biossíntese , Hepatite C Crônica/imunologia , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Interferon gama/biossíntese , Interleucina-10/biossíntese , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Células Th1 , Células Th2 , Fator de Necrose Tumoral alfa/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética
12.
Mol Ther ; 23(3): 578-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25492563

RESUMO

Current therapies for the hepatitis B virus (HBV), a major cause of severe liver disease, suppress viral replication but replication rebounds if therapy is withdrawn. It is widely accepted that immune activation is needed to control replication off-therapy. To specifically activate T cells crossreactive between the hepatitis B core and e antigens (HBcAg/HBeAg) in chronically infected patients, we developed a therapeutic vaccine candidate. The vaccine encompass codon-optimized HBcAg and IL-12 expressing plasmids delivered using targeted high-pressure injection combined with in vivo electroporation. One dose of the vaccine primed a B-cell-independent polyfunctional T-cell response, in wild-type, and in HBeAg-transgenic mice with an impaired ability to respond to HBc/eAg. The response peaked at 2 weeks and contracted at week 6 after vaccination. Coadministration of IL-12 improved antibody levels, and T-cell expansion and functionality. The vaccine primed T cells that, 2 weeks after a single dose, cleared hepatocytes transiently expressing HBcAg in vaccinated wild-type and HBeAg-transgenic mice. However, 4 weeks later, these functional responses were lost. Booster doses after 8-12 weeks effectively restored function and expansion of the rapidly contracting T cells. Thus, this vaccine strategy primes functional HBcAg-specific T cells in a host with dysfunctional response to HBV.


Assuntos
Anticorpos Anti-Hepatite B/biossíntese , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/prevenção & controle , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Animais , Proliferação de Células , Eletroporação , Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/genética , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/imunologia , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Fígado/imunologia , Fígado/virologia , Camundongos , Camundongos Transgênicos , Plasmídeos/química , Plasmídeos/metabolismo , Linfócitos T/virologia , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
13.
Med Microbiol Immunol ; 204(1): 131-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25535102

RESUMO

DNA vaccination has historically failed to raise strong immune responses in humans. Recent delivery techniques such as the gene gun and in vivo electroporation (EP)/electrotransfer (ET) have completely changed the efficiency of DNA vaccines in humans. In vivo EP exerts multiple effects that contribute to its efficiency. The two central factors are most likely the increased DNA uptake due to the transient membrane destabilization, and the local tissue damage acting as an adjuvant. To date, several studies in humans have used in vivo EP/ET to deliver DNA. Some of these results have been quite promising with strong T cell responses and/or transient effects on the viral replication. This suggests that improved strategies of in vivo EP/ET can be a future way to deliver DNA in humans.


Assuntos
Eletroporação/métodos , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Humanos , Linfócitos T/imunologia , Vacinas de DNA/imunologia
14.
J Immunol ; 190(3): 1113-24, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23284053

RESUMO

The hepatitis C virus (HCV) nonstructural (NS) 5A protein has been shown to promote viral persistence by interfering with both innate and adaptive immunity. At the same time, the HCV NS5A protein has been suggested as a target for antiviral therapy. In this study, we performed a detailed characterization of HCV NS5A immunogenicity in wild-type (wt) and immune tolerant HCV NS5A-transgenic (Tg) C57BL/6J mice. We evaluated how efficiently HCV NS5A-based genetic vaccines could activate strong T cell responses. Truncated and full-length wt and synthetic codon-optimized NS5A genotype 1b genes were cloned into eukaryotic expression plasmids, and the immunogenicity was determined after i.m. immunization in combination with in vivo electroporation. The NS5A-based genetic vaccines primed high Ab levels, with IgG titers of >10(4) postimmunization. With respect to CD8(+) T cell responses, the coNS5A gene primed more potent IFN-γ-producing and lytic cytotoxic T cells in wt mice compared with NS5A-Tg mice. In addition, high frequencies of NS5A-specific CD8(+) T cells were found in wt mice after a single immunization. To test the functionality of the CTL responses, the ability to inhibit growth of NS5A-expressing tumor cells in vivo was analyzed after immunization. A single dose of coNS5A primed tumor-inhibiting responses in both wt and NS5A-Tg mice. Finally, immunization with the coNS5A gene primed polyfunctional NS5A-specific CD8(+) T cell responses. Thus, the coNS5A gene is a promising therapeutic vaccine candidate for chronic HCV infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , DNA Viral/imunologia , Hepacivirus/imunologia , Vacinas de DNA/imunologia , Vacinas contra Hepatite Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Especificidade de Anticorpos , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer , Códon/genética , Citotoxicidade Imunológica , DNA Viral/síntese química , DNA Viral/genética , Genes Sintéticos , Antígenos H-2/imunologia , Hepacivirus/genética , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/genética , Anticorpos Anti-Hepatite C/imunologia , Imunização , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Ativação Linfocitária , Linfocinas/metabolismo , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T Citotóxicos/imunologia , Vacinas contra Hepatite Viral/uso terapêutico , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
15.
J Immunol ; 189(9): 4510-9, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23024278

RESUMO

Virus-specific CTL with high levels of functional avidity have been associated with viral clearance in hepatitis C virus (HCV) infection and with enhanced protective immunity. In chronic HCV infection, lack of antiviral CTL is frequently observed. In this study, we aim to investigate novel HCV TCRs that differ in Ag specificity. This involved isolating new HCV-specific murine TCRs that recognize a conserved HLA-A2-restricted CTL epitope within the nonstructural protein (NS) 5A viral protein and comparing them with TCRs recognizing another conserved CTL target in the NS3 viral protein. This was done by expressing the TCRs in human T cells and analyzing the function of the resulting TCR-transduced T cells. Our result indicates that these TCRs are efficiently assembled in transduced human T cells. They recognize peptide-loaded targets and demonstrate polyfunctional features such as IL-2, IFN-γ, and TNF-α secretion. However, in contrast to NS3-specific TCRs, the NS5A TCR-transduced T cells consist of a smaller proportion of polyfunctional T cells and require more peptide ligands to trigger the effector functions, including degranulation. Despite the differences, NS5A TCRs show effective inhibition of HCV replication in human hepatoma cells with persistent HCV RNA replication. Moreover, cellular injury demonstrated by aspartate aminotransferase release and cell death is less significant in the hepatoma cells following coincubation with NS5A TCR-transduced T cells, which is a property consistent with noncytotoxic antiviral CTLs. Our results suggest that HCV TCR-transduced T cells may be promising for the treatment of patients with chronic HCV infections.


Assuntos
Antivirais/farmacologia , Citotoxicidade Imunológica , Epitopos de Linfócito T/fisiologia , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Receptores de Antígenos de Linfócitos T/fisiologia , Replicação Viral/imunologia , Sequência de Aminoácidos , Animais , Antivirais/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Citotoxicidade Imunológica/genética , Epitopos de Linfócito T/toxicidade , Feminino , Técnicas de Transferência de Genes , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/genética , Transdução Genética/métodos , Replicação Viral/genética
16.
Mol Ther ; 21(9): 1796-805, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23752314

RESUMO

Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was performed in treatment naive HCV genotype 1 patients, receiving four monthly vaccinations in the deltoid muscles with 167, 500, or 1,500 µg codon-optimized HCV nonstructural (NS) 3/4A-expressing DNA vaccine delivered by in vivo electroporation (EP). Enrollment was done with 2 weeks interval between patients for safety reasons. Treatment was safe and well tolerated. The vaccinations significantly improved IFN-γ-producing responses to HCV NS3 during the first 6 weeks of therapy. Five patients experienced 2-10 weeks 0.6-2.4 log10 reduction in serum HCV RNA. Six out of eight patients starting SOC therapy within 1-30 months after the last vaccine dose were cured. This first-in-man therapeutic HCV DNA vaccine study with the vaccine delivered by in vivo EP shows transient effects in patients with chronic HCV genotype 1 infection. The interesting result noted after SOC therapy suggests that therapeutic vaccination can be explored in a combination with SOC treatment.


Assuntos
Antivirais/uso terapêutico , Hepatite C Crônica/terapia , Interferon-alfa/uso terapêutico , Polietilenoglicóis/uso terapêutico , Ribavirina/uso terapêutico , Vacinas de DNA/uso terapêutico , Vacinas contra Hepatite Viral/uso terapêutico , Adulto , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Terapia Combinada , Eletroporação , Feminino , Hepacivirus/genética , Hepacivirus/imunologia , Hepacivirus/fisiologia , Hepatite C Crônica/genética , Hepatite C Crônica/virologia , Humanos , Interferon-alfa/administração & dosagem , Interferon-alfa/efeitos adversos , Interferons , Interleucinas/genética , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , RNA Viral/sangue , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Ribavirina/administração & dosagem , Ribavirina/efeitos adversos , Padrão de Cuidado , Linfócitos T/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/efeitos adversos , Carga Viral
17.
Drug Resist Updat ; 16(3-5): 60-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23911647

RESUMO

Presently the development of new therapies for hepatitis C virus (HCV) is rapidly moving forward. Almost every week new data appear on how direct acting antivirals (DAAs) succeed or fail in clinical trials. Despite the potency of many of the DAA combinations, the effect exerted by ribavirin (RBV) is still needed for an effective therapy in many new DAA combinations. Due to the strong antiviral effect of DAAs, it is likely that a major complementary therapeutic effect exerted by RBV is immune modulation resulting in an increased barrier to development of resistance. For HCV genotype 1a infections elimination of pegylated interferon, is not possible in many DAA combinations without jeopardizing the results. The host immune response is thus likely to play a key role even during DAA-based therapies. Hence, T cells may recognize and eliminate viral variants with resistance to the DAAs. We herein show several examples where this may be the case, supporting the rationale of including the host response also in the new therapeutic regimens. This review will describe the potential benefits of combining various DAAs with means to activate the specific immune response against HCV.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/terapia , Imunomodulação/efeitos dos fármacos , Modelos Biológicos , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Terapia Combinada , Farmacorresistência Viral , Hepacivirus/imunologia , Hepacivirus/metabolismo , Hepatite C Crônica/imunologia , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Humanos , Ligantes , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Ribavirina/uso terapêutico , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Vacinas contra Hepatite Viral/uso terapêutico
18.
J Infect Dis ; 208(6): 1008-19, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23776192

RESUMO

BACKGROUND: We explored the concept of heterologous prime/boost vaccination using 2 therapeutic vaccines currently in clinical development aimed at treating chronically infected hepatitis C virus (HCV) patients: prime with a DNA-based vaccine expressing HCV genotype 1a NS3/4A proteins (ChronVac-C) and boost with a modified vaccinia virus Ankara vaccine expressing genotype 1b NS3/4/5B proteins (MVATG16643). METHODS: Two ChronVac-C immunizations 4 weeks apart were delivered intramuscularly in combination with in vivo electroporation and subsequently 5 or 12 weeks later boosted by 3 weekly subcutaneous injections of MVATG16643. Two mouse strains were used, and we evaluated quality, magnitude, and functionality of the T cells induced. RESULTS: DNA prime/MVA boost regimen induced significantly higher levels of interferon γ (IFN-γ) or interleukin 2 (IL-2) ELISpot responses compared with each vaccine alone, independent of the time of analysis and the time interval between vaccinations. Both CD8⁺ and CD4⁺ T-cell responses as well as the spectrum of epitopes recognized was improved. A significant increase in polyfunctional IFN-γ/tumor necrosis factor α (TNF-α)/CD107a⁺ CD8⁺ T cells was detected following ChronVac-C/MVATG16643 vaccination (from 3% to 25%), and prime/boost was the only regimen that activated quadrifunctional T cells (IFN-γ/TNF-α/CD107a/IL-2). In vivo functional protective capacity of DNA prime/MVA boost was demonstrated in a Listeria-NS3-1a challenge model. CONCLUSIONS: We provide a proof-of-concept that immunogenicity of 2 HCV therapeutic vaccines can be improved using their combination, which merits further clinical development.


Assuntos
Formação de Anticorpos , Hepatite C/prevenção & controle , Vacinação/métodos , Vacinas contra Hepatite Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Genótipo , Hepacivirus , Hepatite C/imunologia , Imunização Secundária , Interferon gama/sangue , Interleucina-2/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/sangue , Vacinas de DNA/imunologia , Vacinas contra Hepatite Viral/genética
19.
J Immunol ; 186(9): 5107-18, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21430225

RESUMO

The hepatitis C virus (HCV)-specific T cell response in patients with chronic HCV is dysfunctional. In this study, we aimed at restoring immunological function through therapeutic vaccination in a transgenic mouse model with impaired HCV-specific T cell responses due to a persistent presence of hepatic HCV nonstructural (NS)3/4A Ags. The HCV-specific T cells have an actively maintained dysfunction reflected in reduced frequency, impaired cytokine production, and impaired effector function in vivo, which can be partially restored by blocking regulatory T cells or programmed cell death ligand 1. We hypothesized that the impairment could be corrected by including sequences that created a normal priming environment by recruiting "healthy" heterologous T cells and by activating innate signaling. Endogenously expressed hepatitis B core Ag (HBcAg) can recruit heterologous T cells and activate TLR (TLR7) signaling. Hence, by combining HCV NS3/4A with different forms of HBcAg we found that heterologous sequences somewhat improved activation and expansion of NS3/4A-specific T cells in a wild-type host. Importantly, the signals provided by HBcAg effectively restored the activation of HCV-specific T cells in a tolerant NS3/4A-transgenic mouse model. The adjuvant effect could also be transferred to the priming of dysfunctional HLA-A2-restricted NS3-specific T cells in vivo. Thus, recruiting healthy heterologous T cells to the site of priming may also help restore HCV-specific responses present in a chronically infected host.


Assuntos
Hepatite C Crônica/imunologia , Linfócitos T/imunologia , Vacinação/métodos , Vacinas contra Hepatite Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Animais Geneticamente Modificados , Antígenos Virais/imunologia , Antígenos Virais/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hepacivirus/imunologia , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Antígenos do Núcleo do Vírus da Hepatite B/uso terapêutico , Hepatite C Crônica/terapia , Humanos , Imunoprecipitação , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
J Gen Virol ; 93(Pt 8): 1680-1686, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22592266

RESUMO

It has been well established that immunological escape mutations within the hepatitis C virus genotype (gt) 1a non-structural (NS) 3/4A protease are partly prevented by a reduction in viral protease fitness. Surprisingly little is known about whether similar mutations affect proteases from other genotypes. In the present study, we assessed both the HLA-A2-restricted CTL response and gt3a NS3/4A protease fitness. Similar to gt1, the 1073-1081 epitope was immunodominant within the gt3a-specific HLA-A2-restricted CTL response, despite sequence similarity of only 56 % between the gt1a and gt3a genes. However, unlike the gt1a NS3/4A protease, all residues within the gt3a 1073-1081 epitope could be replaced sequentially by alanine while retaining protease activity, at least in part.


Assuntos
Alanina/química , Regulação Viral da Expressão Gênica/fisiologia , Hepacivirus/genética , Epitopos Imunodominantes/genética , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Clonagem Molecular , Genótipo , Humanos , Dados de Sequência Molecular , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA