Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 272: 111053, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669255

RESUMO

Local energy transition processes are complex socio-technical transitions requiring careful study. The use of System Dynamics (SD) in modelling and analyzing local energy transitions is especially suitable given the characteristics of SD. Our aim is to systematically categorize the different ways SD is used and useful to scrutinize local energy transitions, and to see if we can discern any common themes that can be useful to researchers looking to scrutinize local energy transitions, using SD. The study is exploratory in nature, with peer-reviewed journal and conference articles analyzed using content analysis. The six categories on which the articles are analyzed are: the sector the article studies; the transition that is studied in the article; the modelling depth in the article; the objective of the article; the justification for using SD provided in the article and the levels of interaction with 'local'. Our findings show most of the local energy transitions have been studied using simulatable Stock and Flow Diagrams in SD methodology. The important sectors in the energy field are represented in terms of SD modelling of local energy transitions, including electricity, transport, district heating etc. Most of the local energy transitions scrutinized by SD in the articles have descriptive objectives, with some prescriptive, and just one evaluative objective. In terms of justification for using SD provided by the articles analyzed in this study, we found four major themes along which the justifications that were provided. They are dynamics, feedbacks, delays and complexity, systematic thinking, bridging disciplines and actor interactions and behaviour. The 'dynamics, feedbacks, delays and complexity' theme is the most cited justification for the use of SD in scrutinizing local energy transitions, followed by systematic thinking.


Assuntos
Conservação de Recursos Energéticos , Análise de Sistemas , Calefação
2.
Mitig Adapt Strateg Glob Chang ; 20(8): 1335-1359, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-30197558

RESUMO

This paper presents a modeling comparison on how stabilization of global climate change at about 2 °C above the pre-industrial level could affect economic and energy systems development in China and India. Seven General Equilibrium (CGE) and energy system models on either the global or national scale are soft-linked and harmonized with respect to population and economic assumptions. We simulate a climate regime, based on long-term convergence of per capita carbon dioxide (CO2) emissions, starting from the emission pledges presented in the Copenhagen Accord to the United Nations Framework Convention on Climate Change and allowing full emissions trading between countries. Under the climate regime, Indian emission allowances are allowed to grow more than the Chinese allowances, due to the per capita convergence rule and the higher population growth in India. Economic and energy implications not only differ among the two countries, but also across model types. Decreased energy intensity is the most important abatement approach in the CGE models, while decreased carbon intensity is most important in the energy system models. The reduction in carbon intensity is mostly achieved through deployment of carbon capture and storage, renewable energy sources and nuclear energy. The economic impacts are generally higher in China than in India, due to higher 2010-2050 cumulative abatement in China and the fact that India can offset more of its abatement cost though international emission trading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA