Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; : e0029424, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829139

RESUMO

Arenaviral vaccine vectors encoding simian immunodeficiency virus (SIV) immunogens are capable of inducing efficacious humoral and cellular immune responses in nonhuman primates. Several studies have evaluated the use of immune modulators to further enhance vaccine-induced T-cell responses. The hematopoietic growth factor Flt3L drives the expansion of various bone marrow progenitor populations, and administration of Flt3L was shown to promote expansion of dendritic cell populations in spleen and blood, which are targets of arenaviral vectors. Therefore, we evaluated the potential of Flt3 signaling to enhance the immunogenicity of arenaviral vaccines encoding SIV immunogens (SIVSME543 Gag, Env, and Pol) in rhesus macaques, with a rhesus-specific engineered Flt3L-Fc fusion protein. In healthy animals, administration of Flt3L-Fc led to a 10- to 100-fold increase in type 1 dendritic cells 7 days after dosing, with no antidrug antibody (ADA) generation after repeated dosing. We observed that administration of Flt3L-Fc fusion protein 7 days before arenaviral vaccine increased the frequency and activation of innate immune cells and enhanced T-cell activation with no treatment-related adverse events. Flt3L-Fc administration induced early innate immune activation, leading to a significant enhancement in magnitude, breadth, and polyfunctionality of vaccine-induced T-cell responses. The Flt3L-Fc enhancement in vaccine immunogenicity was comparable to a combination with αCTLA-4 and supports the use of safe and effective variants of Flt3L to augment therapeutic vaccine-induced T-cell responses.IMPORTANCEInduction of a robust human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell response through therapeutic vaccination is considered essential for HIV cure. Arenaviral vaccine vectors encoding simian immunodeficiency virus (SIV) immunogens have demonstrated strong immunogenicity and efficacy in nonhuman primates. Here, we demonstrate that the immunogenicity of arenaviral vectors encoding SIV immunogens can be enhanced by administration of Flt3L-Fc fusion protein 7 days before vaccination. Flt3L-Fc-mediated increase in dendritic cells led to robust improvements in vaccine-induced T- and B-cell responses compared with vaccine alone, and Flt3L-Fc dosing was not associated with any treatment-related adverse events. Importantly, immune modulation by either Flt3L-Fc or αCTLA-4 led to comparable enhancement in vaccine response. These results indicate that the addition of Flt3L-Fc fusion protein before vaccine administration can significantly enhance vaccine immunogenicity. Thus, safe and effective Flt3L variants could be utilized as part of a combination therapy for HIV cure.

2.
J Infect Dis ; 229(4): 1077-1087, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602681

RESUMO

Hepatitis B Virus (HBV) is a major driver of infectious disease mortality. Curative therapies are needed and ideally should induce CD8 T cell-mediated clearance of infected hepatocytes plus anti-hepatitis B surface antigen (HBsAg) antibodies (anti-HBs) to neutralize residual virus. We developed a novel therapeutic vaccine using non-replicating arenavirus vectors. Antigens were screened for genotype conservation and magnitude and genotype reactivity of T cell response, then cloned into Pichinde virus (PICV) vectors (recombinant PICV, GS-2829) and lymphocytic choriomeningitis virus (LCMV) vectors (replication-incompetent, GS-6779). Alternating immunizations with GS-2829 and GS-6779 induced high-magnitude HBV T cell responses, and high anti-HBs titers. Dose schedule optimization in macaques achieved strong polyfunctional CD8 T cell responses against core, HBsAg, and polymerase and high titer anti-HBs. In AAV-HBV mice, GS-2829 and GS-6779 were efficacious in animals with low pre-treatment serum HBsAg. Based on these results, GS-2829 and GS-6779 could become a central component of cure regimens.


Assuntos
Arenavirus , Hepatite B , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Vacinas contra Hepatite B , Anticorpos Anti-Hepatite B , Imunização , Linfócitos T CD8-Positivos , Genótipo , Antígenos de Superfície
3.
Cell Immunol ; 325: 33-40, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29402391

RESUMO

Gangliosides shed by tumors into their microenvironment (TME) are immunoinhibitory. Interferon-γ (IFN-γ) may boost antitumor immune responses. Thus we wondered whether IFN-γ would counteract tumor ganglioside-mediated immune suppression. To test this hypothesis, we exposed human monocyte-derived LPS-activated dendritic cells (DC) to IFN-γ and to a highly purified ganglioside, GD1a. DC ganglioside exposure decreased TLR-dependent p38 signaling, explaining the previously observed ganglioside-induced down-modulation of pro-inflammatory surface markers and cytokines. Strikingly, while increasing LPS-dependent DC responses, IFN-γ unexpectedly did not counteract the inhibitory effects of GD1a. Rather, induction of indoleamine 2,3-dioxygenase (IDO1), and expression of STAT1/IRF-1 and programmed cell death ligand (PD-L1), indicated that the immunoinhibitory, not an immune stimulatory, IFN-γ-signaling axis, was active. The combination, IFN-γ and DC ganglioside enrichment, markedly impaired DC stimulatory potential of CD8+ T-cells. We suggest that gangliosides and IFN-γ may act in concert as immunosuppressive mediators in the TME, possibly promoting tumor progression.


Assuntos
Gangliosídeos/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Apoptose/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Gangliosídeos/metabolismo , Voluntários Saudáveis , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Neoplasias/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia
4.
NPJ Vaccines ; 8(1): 175, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945621

RESUMO

HIV affects more than 38 million people worldwide. Although HIV can be effectively treated by lifelong combination antiretroviral therapy, only a handful of patients have been cured. Therapeutic vaccines that induce robust de novo immune responses targeting HIV proteins and latent reservoirs will likely be integral for functional HIV cure. Our study shows that immunization of naïve rhesus macaques with arenavirus-derived vaccine vectors encoding simian immunodeficiency virus (SIVSME543 Gag, Env, and Pol) immunogens is safe, immunogenic, and efficacious. Immunization induced robust SIV-specific CD8+ and CD4+ T-cell responses with expanded cellular breadth, polyfunctionality, and Env-binding antibodies with antibody-dependent cellular cytotoxicity. Vaccinated animals had significant reductions in median SIV viral load (1.45-log10 copies/mL) after SIVMAC251 challenge compared with placebo. Peak viral control correlated with the breadth of Gag-specific T cells and tier 1 neutralizing antibodies. These results support clinical investigation of arenavirus-based vectors as a central component of therapeutic vaccination for HIV cure.

5.
Front Oncol ; 11: 732166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722273

RESUMO

Engineered viral vectors represent a promising strategy to trigger antigen-specific antitumor T cell responses. Arenaviruses have been widely studied because of their ability to elicit potent and protective T cell responses. Here, we provide an overview of a novel intravenously administered, replication-competent, non-lytic arenavirus-based vector technology that delivers tumor antigens to induce antigen-specific anti-cancer T cell responses. Preclinical studies in mice and cell culture experiments with human peripheral blood mononuclear cells demonstrate that arenavirus vectors preferentially infect antigen-presenting cells. This, in conjunction with a non-lytic functional activation of the infected antigen-presenting cells, leads to a robust antigen-specific CD8+ T cell response. T cell migration to, and infiltration of, the tumor microenvironment has been demonstrated in various preclinical tumor models with vectors encoding self- and non-self-antigens. The available data also suggest that arenavirus-based vector therapy can induce immunological memory protecting from tumor rechallenge. Based on promising preclinical data, a phase 1/2 clinical trial was initiated and is currently ongoing to test the activity and safety of arenavirus vectors, HB-201 and HB-202, created using lymphocytic choriomeningitis virus and Pichinde virus, respectively. Both vectors have been engineered to deliver non-oncogenic versions of the human papilloma virus 16 (HPV16) antigens E7 and E6 and will be injected intravenously with or without an initial intratumoral dose. This dose escalation/expansion study is being conducted in patients with recurrent or metastatic HPV16+ cancers. Promising preliminary data from this ongoing clinical study have been reported. Immunogenicity data from several patients demonstrate that a single injection of HB-201 or HB-202 monotherapy is highly immunogenic, as evidenced by an increase in inflammatory cytokines/chemokines and the expansion of antigen-specific CD8+ T cell responses. This response can be further enhanced by alternating injections of HB-202 and HB-201, which has resulted in frequencies of circulating HPV16 E7/E6-specific CD8+ T cells of up to 40% of the total CD8+ T cell compartment in peripheral blood in analyses to date. Treatment with intravenous administration also resulted in a disease control rate of 73% among 11 evaluable patients with head and neck cancer dosed every three weeks, including 2 patients with a partial response.

6.
Front Immunol ; 8: 1152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979262

RESUMO

Donor T-cells contribute to reconstitution of protective immunity after allogeneic hematopoietic stem cell transplantation (HSCT) but must acquire specific tolerance against recipient alloantigens to avoid life-threatening graft-versus-host disease (GvHD). Systemic immunosuppressive drugs may abrogate severe GvHD, but this also impedes memory responses to invading pathogens. Here, we tested whether ex vivo blockade of CD28 co-stimulation can enable selective T-cell tolerization to alloantigens by facilitating CD80/86-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) signaling. Treatment of human allogeneic dendritic cell/T-cell co-cultures with a human CD28 blocking antibody fragment (α-huCD28) significantly abrogated subsequent allospecific immune responses, seen by decreased T-cell proliferation and of type 1 cytokine (IFN-γ and IL-2) expression. Allo-tolerization persisted after discontinuation of CD28 blockade and secondary alloantigen stimulation, as confirmed by enhanced CTLA-4 and PD-1 immune checkpoint signaling. However, T-cells retained reactivity to pathogens, supported by clonotyping of neo-primed and cross-reactive T-cells specific for Candida albicans or third-party antigens using deep sequencing analysis. In an MHC-mismatched murine model, we tolerized C57BL/6 T-cells by ex vivo exposure to a murine single chain Fv specific for CD28 (α-muCD28). Infusion of these cells, after α-muCD28 washout, into bone marrow-transplanted BALB/c mice caused allo-tolerance and did not induce GvHD-associated hepatic pathology. We conclude that selective CD28 blockade ex vivo can allow the generation of stably allo-tolerized T-cells that in turn do not induce graft-versus-host reactions while maintaining pathogen reactivity. Hence, CD28 co-stimulation blockade of donor T-cells may be a useful therapeutic approach to support the immune system after HSCT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA