Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Revista
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 110(5): 783-794.e6, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990571

RESUMO

Hippocampal place cells underlie spatial navigation and memory. Remarkably, CA1 pyramidal neurons can form new place fields within a single trial by undergoing rapid plasticity. However, local feedback circuits likely restrict the rapid recruitment of individual neurons into ensemble representations. This interaction between circuit dynamics and rapid feature coding remains unexplored. Here, we developed "all-optical" approaches combining novel optogenetic induction of rapidly forming place fields with 2-photon activity imaging during spatial navigation in mice. We find that induction efficacy depends strongly on the density of co-activated neurons. Place fields can be reliably induced in single cells, but induction fails during co-activation of larger subpopulations due to local circuit constraints imposed by recurrent inhibition. Temporary relief of local inhibition permits the simultaneous induction of place fields in larger ensembles. We demonstrate the behavioral implications of these dynamics, showing that our ensemble place field induction protocol can enhance subsequent spatial association learning.


Assuntos
Hipocampo , Células de Lugar , Animais , Região CA1 Hipocampal/fisiologia , Retroalimentação , Hipocampo/fisiologia , Camundongos , Neurônios/fisiologia , Células Piramidais/fisiologia
2.
Neuron ; 107(2): 283-291.e6, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32392472

RESUMO

Episodic memory requires linking events in time, a function dependent on the hippocampus. In "trace" fear conditioning, animals learn to associate a neutral cue with an aversive stimulus despite their separation in time by a delay period on the order of tens of seconds. But how this temporal association forms remains unclear. Here we use two-photon calcium imaging of neural population dynamics throughout the course of learning and show that, in contrast to previous theories, hippocampal CA1 does not generate persistent activity to bridge the delay. Instead, learning is concomitant with broad changes in the active neural population. Although neural responses were stochastic in time, cue identity could be read out from population activity over longer timescales after learning. These results question the ubiquity of seconds-long neural sequences during temporal association learning and suggest that trace fear conditioning relies on mechanisms that differ from persistent activity accounts of working memory.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/fisiologia , Memória Episódica , Rede Nervosa/fisiologia , Animais , Comportamento Animal , Região CA1 Hipocampal/fisiologia , Condicionamento Operante , Sinais (Psicologia) , Medo/psicologia , Hipocampo/citologia , Processamento de Imagem Assistida por Computador , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Optogenética
3.
Neuron ; 63(3): 372-85, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19679076

RESUMO

The entorhinal cortex provides both direct and indirect inputs to hippocampal CA1 neurons through the perforant path and Schaffer collateral synapses, respectively. Using both two-photon imaging of synaptic vesicle cycling and electrophysiological recordings, we found that the efficacy of transmitter release at perforant path synapses is lower than at Schaffer collateral inputs. This difference is due to the greater contribution to release by presynaptic N-type voltage-gated Ca(2+) channels at the Schaffer collateral than perforant path synapses. Induction of long-term potentiation that depends on activation of NMDA receptors and L-type voltage-gated Ca(2+) channels enhances the low efficacy of release at perforant path synapses by increasing the contribution of N-type channels to exocytosis. This represents a previously uncharacterized presynaptic mechanism for fine-tuning release properties of distinct classes of synapses onto a common postsynaptic neuron and for regulating synaptic function during long-term synaptic plasticity.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Via Perfurante/citologia , Recrutamento Neurofisiológico/fisiologia , Sinapses/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Análise de Variância , Animais , Biofísica , Bloqueadores dos Canais de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Cinética , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp/métodos , Fótons , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Sinapses/efeitos dos fármacos , Fatores de Tempo , ômega-Agatoxina IVA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA