Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 12(1): 441, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362466

RESUMO

BACKGROUND AND OBJECTIVES: The X-linked bleeding disorder, hemophilia A, is caused by defective production of factor VIII (FVIII). Hemophilic patients require regular FVIII infusions. Recombinant factor replacement poses the safest line of therapy. However, its main drawbacks are high expenses and the higher liability for formation of inhibitors. Recent studies confirmed the ability of bone marrow-derived stem cells to secrete FVIII. This study aims to generate bioscaffold from decellularized liver and subsequently seed it with trans-differentiated human stem cells into hepatic-like cells. This scaffold can then be implanted intraperitoneally or subcutaneously to provide FVIII. METHODS: After generation of the bioscaffold, seeding of discoid scaffolds with trans-differentiated human hepatocyte-like cells was performed. Then, the generated organoid was implanted into peritoneal cavity or subcutaneous tissue of experimental rats. RESULTS: Serum human FVIII was significantly increased in rats subjected to subcutaneous implantation compared intraperitoneal implantation. Immunostaining for detecting Cytokeratin 19 and human anti-globulin confirmed the presence of mature human hepatocytes that were significantly increased in subcutaneous implanted scaffold compared to the intraperitoneal one. CONCLUSION: Implantation of decellularized bioscaffold seeded with trans-differentiated stem cells in rats was successful to establish production of FVIII. Subcutaneous implantation showed higher FVIII levels than intraperitoneal implantation.


Assuntos
Hemofilia A , Tela Subcutânea , Animais , Diferenciação Celular , Hepatócitos , Humanos , Ratos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA