Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Opt Express ; 29(3): 4082-4090, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770995

RESUMO

Simultaneous imaging of a three-dimensional distribution of point sources is presented. In a two-lens microscope, the point-spreads on the quasi-image plane, which is located between the Fourier and image planes, are spatially distinct, so a set of Fresnel lenslets can perform individual wave-front shaping for axial and lateral rearrangements of the images. In experiments performed with single atoms and holographically programmed lenslets, various three-dimensional arrangements of point sources, including axially aligned atoms, are successfully refocused on the screen, demonstrating the simultaneous and time-efficient detection of the three-dimensional holographic imaging. We expect that non-sequential real-time measurements of three-dimensional point sources shall be in particular useful for quantum correlation measurements and in situ tracking of dynamic particles.

2.
Phys Rev Lett ; 124(3): 033603, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031861

RESUMO

We present an entanglement scheme for Rydberg atoms using the van der Waals interaction phase induced by Ramsey-type pulsed interactions. This scheme realizes not only controlled phase operations between atoms at a distance larger than Rydberg blockade distance, but also various counterintuitive entanglement examples, including two-atom entanglement in the presence of a closer third atom and W-state generation for three partially blockaded atoms. Experimental realization is conducted with single rubidium atoms in optical tweezer dipole traps, to demonstrate the proposed entanglement generations with an entanglement fidelity of F=0.59±0.11.

3.
Opt Express ; 27(4): 3944-3951, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876018

RESUMO

The leakage suppression problem is considered for a three-level ladder-type quantum system, in which the first two levels are the qubit system and the third is the leakage state weakly coupled to the qubit system. We show that two (three) phase- and amplitude-controlled pulses are sufficient for arbitrary qubit controls from the ground (an arbitrary) initial state, with leakage suppressed up to the first order of perturbation without additional pulse-area cost. A proof-of-principle experiment was performed with shaped ultrafast optical pulses and cold rubidium atoms, and the result shows a good agreement with the theory.

4.
Opt Express ; 27(3): 2184-2196, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732259

RESUMO

We demonstrate fast and efficient neutral atom rearrangements in an optical tweezer-trap array, using an enhanced hologram generation algorithm. The conventional Gerchberg-Saxton (GS) algorithm is modified to include zero-padding hologram expansion for optical tweezer sharpness, weighted iteration feedback for reduced crosstalk, and phase induction for successive phase continuity. With the new GS algorithm, we experimentally demonstrate defect-free formation of 2D atom arrays with various geometries, achieving a high loading probability of 0.98 for up to N ∼ 30 atoms. Furthermore, the hologram movie calculation speed is enhanced to cover a computational scalability up to 𝒪(103).

5.
Opt Express ; 26(2): 1324-1332, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29402007

RESUMO

We demonstrate the use of the ultrafast spatial coherent-control method to resolve the fine-structure two-photon transitions of atomic rubidium. Counter-propagating ultrafast optical pulses with spectral phase and amplitude programmed with our optimized solutions successfully induced the two-photon transitions through 5S1/2-5P1/2-5D and 5S1/2-5P3/2-5D pathways, both simultaneously and at distinct spatial locations. Three different pulse-shaping solutions are introduced that combine amplitude shaping, which avoids direct intermediate resonances, and phase programming, which enables the remaining spectral components to be coherently interfered through the targeted transition pathways. Experiments were performed with a room-temperature vapor cell, and the results agree well with theoretical analysis.

6.
Phys Rev Lett ; 120(18): 180502, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775353

RESUMO

Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

7.
Opt Express ; 24(9): 9816-25, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137595

RESUMO

We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few µm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

8.
Opt Express ; 24(19): 21276-85, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661871

RESUMO

Time-domain spectroscopy is used to probe the polarization dependence of the terahertz-frequency absorption of α-lactose molecules in the near-field vicinity of a sub-wavelength-scale metal slit. The experimental result finds that the 0.53-THz absorption of this material has an unexpected polarization dependence, strongly coupled to the slit orientation; in particular, the electric wave in parallel polarization exhibits even complete vanishing of the otherwise resonant strong absorption. The physics behind this phenomena may be explained based on the Bethe's sub-wavelength diffraction: the electric field that is measured in the far field, but diffracted from a sub-wavelength-scale metal aperture, originates from solely magnetic dipole radiation and not from the electric dipole radiation, thus showing no electrically-coupled material response.

9.
Opt Lett ; 40(4): 510-3, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25680137

RESUMO

We consider the Rabi oscillation of an atom ensemble of Gaussian spatial distribution interacting with ultrafast laser pulses. Based on an analytical model calculation, we show that its dephasing dynamics is solely governed by the size ratio between the atom ensemble and the laser beam, and that every oscillation peak of the inhomogeneously broadened Rabi flopping falls on the homogeneous Rabi oscillation curve. The results are verified experimentally with a cold rubidium vapor in a magneto-optical trap. As a robust means to achieve higher-fidelity population inversion of the atom ensemble, we demonstrate a spin-echo type R(x)(π/2)R(y)(π)R(x)(π/2) composite interaction as well.

10.
Sci Data ; 11(1): 111, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263410

RESUMO

Finding the maximum independent set (MIS) of a large-size graph is a nondeterministic polynomial-time (NP)-complete problem not efficiently solvable with classical computations. Here, we present a set of quantum adiabatic computing data of Rydberg-atom experiments performed to solve the MIS problem of up to 141 atoms randomly arranged on the king lattice. A total of 582,916 events of Rydberg-atom measurements are collected for experimental MIS solutions of 733,853 different graphs. We provide the raw image data along with the entire binary determinations of the measured many-body ground states and the classified graph data, to offer bench-mark testing and advanced data-driven analyses for validation of the performance and system improvements of the Rydberg-atom approach.

11.
Opt Express ; 21(16): 18805-11, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938795

RESUMO

We report that the interference pattern of Young's double-slit experiment changes as a function of polarization in the sub-wavelength diffraction regime. Experiments carried out with terahertz time-domain spectroscopy reveal that diffracted waves from sub-wavelength-scale slits exhibit either positive or negative phase shift with respect to Gouy phase depending on the polarization. Theoretical explanation based on the induction of electric current and magnetic dipole in the vicinity of the slits shows an excellent agreement with the experimental results.

12.
Opt Lett ; 38(2): 166-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23454950

RESUMO

Terahertz time-domain spectroscopy probes anomalous phase-shift caused by wave diffraction from a subwavelength-scale metal slit or aperture. Carrier frequency phase measurements in the far-field region reveals that nearly 30° phase advance is induced from a subwavelength slit diffraction and that 180° phase-advance from a subwavelength aperture. These results indicate that the conventional 90° phase advance of diffracted waves in the far-field region, known as the Gouy phase shift, is not valid for subwavelength diffraction phenomena. The physical origin of these phase-shift anomalies is attributed to induced electric currents or magnetic dipole radiation, and theoretical analyses based on these factors are in good agreement with the experimental results.

13.
Appl Opt ; 52(36): 8670-5, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513932

RESUMO

Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

14.
Nanoscale ; 15(9): 4325-4333, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752322

RESUMO

By controlling the temporal and spatial features of light, we propose a novel protocol to prepare two-qubit entangling gates on atoms trapped at close distance, which could potentially speed up the operation of the gate from the sub-micro to the nanosecond scale. The protocol is robust to variations in the pulse areas and the position of the atoms, by virtue of the coherent properties of a dark state, which is used to drive the population through Rydberg states. From the time-domain perspective, the protocol generalizes the one proposed by Jaksch and coworkers [Jaksch et al., Phys. Rev. Lett., 2000, 85, 2208], with three pulses that operate symmetrically in time, but with different pulse areas. From the spatial-domain perspective, it uses structured light. We analyze the map of the gate fidelity, which forms rotated and distorted lattices in the solution space. Finally, we study the effect of an additional qubit to the gate performance and propose generalizations that operate with multi-pulse sequences.

15.
Opt Express ; 20(11): 12463-72, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714234

RESUMO

We present a polarization shaping technique for few-cycle terahertz (THz) waves. For this, N femtosecond laser pulses are generated from a devised diffractive optical system made of as-many glass wedges, which then simultaneously illuminate on various angular positions of a sub-wavelength circular pattern of an indium arsenide thin film, to produce a THz wave of tailor-made polarization state given as a superposition of N linearly-polarized THz pulses. By properly arranging the orientation and thickness of the glass wedges, which determine the polarization and its timing of the constituent THz pulses, we successfully generate THz waves of various unconventional polarization states, such as polarization rotation and alternation between circular polarization states.


Assuntos
Lasers , Refratometria/instrumentação , Radiação Terahertz , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
16.
Opt Express ; 20(18): 20783-9, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037127

RESUMO

Terahertz pulse shaping technique is used to adaptively design terahertz waveforms of enhanced spectral correlation to particular materials among a given set of materials. In a proof-of-principle experiment performed with a two-dimensional image target consisted of meta-materials of distinctive resonance frequencies, the as-designed waveforms are used to demonstrate terahertz substance imaging. It is hoped that this material-specific terahertz waveforms may enable single- or few-shot terahertz material classification when being used in conjunction with terahertz power measurement.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Imagem Terahertz/instrumentação , Imagem Terahertz/métodos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Projetos Piloto
17.
Opt Lett ; 37(16): 3378-80, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23381263

RESUMO

We demonstrate Rabi oscillation of a resonant two-photon transition in a three-level ladder-type quantum system of gaseous rubidium atoms induced by a single femtosecond laser pulse. For this, we shape the flat-top spatial profile of the laser pulse and perform the ultrafast population cycling of the atoms as a function of pulse energy. The experimental result confirms that the Rabi frequency of the transition from a ground state to a final state depends linearly on the pulse area, although the transition is a two-photon process.

18.
Opt Express ; 19(3): 2266-77, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369044

RESUMO

We demonstrate ultrafast coherent control of multiphoton absorption in a dynamically shifted energy level structure. In a three-level system that models optical interactions with sodium atoms, we control the quantum interference of sequential 2 + 1 photons and direct three-photon transitions. Dynamic change in energy levels predicts an enormous enhancement of |7p>-state excitation in the strong-field regime by a negatively chirped pulse. In addition, the |4s>-state excitation is enhanced symmetrically by nonzero linear chirp rates given as a function of laser peak intensity and laser detuning. Experiments performed by ultrafast shaped-pulse excitation of ground-state atomic sodium verifies the various strong-field contributions to |3s>-|7p> and |3s>-|4s> transitions. The result suggests that for systems of molecular level understanding adiabatic control approach with analytically shaped pulses becomes a more direct control than feedback-loop black-box approaches.


Assuntos
Modelos Químicos , Teoria Quântica , Sódio/química , Absorção , Simulação por Computador , Fótons
19.
Appl Opt ; 50(18): 2906-10, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21691354

RESUMO

Based on the polarization-sensitive terahertz time-domain spectroscopy, we measured the birefringence for Al2O3 and LiNbO3 single crystals, which correspond to trigonal structures that have an uniaxial birefringence, in the THz frequency range of 0.25 to 1.4 THz. For more comprehensive understanding of the THz birefringence, the measured birefringence is compared with the results of ab initio calculations. The measured birefringence shows good agreement with the calculated value.

20.
Opt Express ; 18(13): 13693-9, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20588503

RESUMO

We report a simple method of creating terahertz waves by applying the photo-Dember effect in a (100)-oriented InAs film coated onto the 45-degree wedged-end facet of an optical fiber. The terahertz waves are generated by infrared pulses guided through the optical fiber which is nearly in contact with a sample and then measured by a conventional photo-conductive antenna detector. Using this alignment-free terahertz source, we performed proof-of-principle experiments of terahertz time-domain spectroscopy and near-field terahertz microscopy. We obtained a bandwidth of 2 THz and 180-microm spatial resolution. Using this method, the THz imaging resolution is expected to be reduced to the size of the optical fiber core. Applications of this device can be extended to sub-wavelength terahertz spectroscopic imaging, miniaturized terahertz system design, and remote sensing.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Miniaturização/instrumentação , Miniaturização/métodos , Fibras Ópticas , Raios Infravermelhos , Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA