Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(9): 4190-4198, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603820

RESUMO

Polyelectrolyte coacervates, with their greater-than-water density, low interfacial energy, shear thinning viscosity, and ability to undergo structural arrest, mediate the formation of diverse load-bearing macromolecular materials in living organisms as well as in industrial material fabrication. Coacervates, however, have other useful attributes that are challenging to study given the metastability of coacervate colloidal droplets and a lack of suitable analytical methods. We adopt solution electrochemistry and nuclear magnetic resonance measurements to obtain remarkable insights about coacervates as solvent media for low-molecular-weight catechols. When catechols are added to dispersions of coacervated polyelectrolytes, there are two significant consequences: (1) catechols preferentially partition up to 260-fold into the coacervate phase, and (2) coacervates stabilize catechol redox potentials by up to +200 mV relative to the equilibrium solution. The results suggest that the relationship between phase-separated polyelectrolytes and their client molecules is distinct from that existing in aqueous solution and has the potential for insulating many redox-unstable chemicals.


Assuntos
Catecóis , Software , Humanos , Polieletrólitos , Solubilidade , Peso Molecular , Água
2.
Langmuir ; 35(48): 16013-16023, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31442058

RESUMO

Chitosan is one of the most popular biopolymers used for biomedical applications with its unique properties of blood clotting and adhesion to tissues. Catechol-functionalized chitosan (CatChit) has shown a significant improvement of those properties of chitosan as biomaterials. However, some well-cited methods of CatChit preparation in existing literature, repeatedly followed by numerous research groups in the past decades, have not stressed the importance of the vulnerability of catechol to oxidation, which resulted in many priceless in vivo studies that used wrong materials, i.e., partially oxidized forms of CatChit. Since some key synthesis parameters were erroneous in those previous reports, it is a challenge to reproduce the published results. To avoid the loss of critical details with these repeated citations, it is essential that we re-establish the critical parameters in these methods. In this study, we examined the accuracy of existing protocols, and optimized one of the protocols to synthesize CatChit. We have confirmed that a notable degree of catechol oxidation is inevitable with the inaccurate synthetic protocols and the maintenance of pH < 5 throughout the preparation of CatChit is essential. We have also re-evaluated interaction between CatChit and mucin, which is widely present in the gastrointestinal (GI) tract, at different pH values using CatChit prepared via our optimized synthetic protocol. Turbidimetric titrations suggested that regardless of the reaction pH, the association between CatChit and mucin increased with increasing concentration of polymer with respect to mucin. The decrease in the average size of the aggregated particles observed by Dynamic Light Scattering (DLS) studies was attributed to the formation of a large number of aggregations with increasing polymer to mucin ratio. ζ potential (ZP) measurements suggested that at acidic reaction pH, the average particle size was dictated by electrostatic interactions, while at a physiological pH, consolidation of covalent and charge-based interactions contributed to the overall surface charge.

3.
Adv Healthc Mater ; 11(10): e2102344, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35026059

RESUMO

Current suture-based surgical techniques used to repair torn rotator cuff tendons do not result in mechanically competent tendon-to-bone attachments, leading to high postoperative failure rates. Although adhesives have been proposed to protect against sutures tearing through tendon during healing, no currently available adhesive meets the clinical needs of adhesive strength, biocompatibility, and promotion of healing. Here, a biocompatible, graded, 3,4-dihydroxy phenyl chitosan (BGC) bioadhesive designed to meet these needs is presented. Although 3,4-dihydroxy phenyl chitosan (DP-chitosan) bioadhesives are biocompatible, their adhesion strength is low; soluble oxidants or cross-linking agents can be added for higher bonding strength, but this sacrifices biocompatibility. These challenges are overcome by developing a periodate-modified ion exchange resin-bead filtration system that oxidizes catechol moieties to quinones and filters off the activating agent and resin. The resulting BGC bioadhesive exhibited sixfold higher strength compared to commercially available tissue adhesives, with strength in the range necessary to improve tendon-to-bone repair (≈1MPa, ≈20% of current suture repair strength). The bioadhesive is biocompatible and promoted tenogenesis; cells exposed to the bioadhesive demonstrated enhanced expression of collagen I and the tenogenic marker Scx. Results demonstrated that the bioadhesive has the potential to improve the strength of a tendon-to-bone repair and promote healing.


Assuntos
Quitosana , Lesões do Manguito Rotador , Adesivos , Fenômenos Biomecânicos , Quitosana/farmacologia , Humanos , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/cirurgia , Técnicas de Sutura , Suturas , Tendões/metabolismo
4.
J Colloid Interface Sci ; 580: 776-784, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717444

RESUMO

Many studies on the deformation of soft films by liquids confirmed the increase in the radius of the deformation and the decrease in the apparent contact angle. However, due to the thinness, the dynamics of the deformation could not be observed until the thermodynamic equilibrium. Thus, the dynamics on thick soft materials was studied until equilibrium to contrast the effect of different interfacial energy between different soft materials and water. Therefore, we prepared two different polymeric fluids with similar rheology by cross-linking monomers, yet with different contact angles with water. Sometime after water droplets were placed on these thick polymers, 3D profiles of the deformation were recorded. Though the effect of the surface tension was not verified, the same trend in the dynamics was observed as with thin films, except for the decrease in the radius after the initial increase. The three-phase boundaries (TPBs) were found not at the apex of the ridges formed during the transition to equilibrium. By calculating the surface tensions and angles of each interface at the equilibrium, we found that the temporary imbalance among surface tensions induced the slip of the TPBs toward the center of water droplets, thus dislocating the TPBs and decreasing the radius.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA