RESUMO
Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moiré superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moiré superlattice can lead to the observation of electronic minibands5-7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor-insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moiré superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moiré pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9.
RESUMO
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.
RESUMO
van der Waals heterostructures composed of two different monolayer crystals have recently attracted attention as a powerful and versatile platform for studying fundamental physics, as well as having great potential in future functional devices because of the diversity in the band alignments and the unique interlayer coupling that occurs at the heterojunction interface. However, despite these attractive features, a fundamental understanding of the underlying physics accounting for the effect of interlayer coupling on the interactions between electrons, photons, and phonons in the stacked heterobilayer is still lacking. Here, we demonstrate a detailed analysis of the strain-dependent excitonic behavior of an epitaxially grown MoS2/WS2 vertical heterostructure under uniaxial tensile and compressive strain that enables the interlayer interactions to be modulated along with the electronic band structure. We find that the strain-modulated interlayer coupling directly affects the characteristic combined vibrational and excitonic properties of each monolayer in the heterobilayer. It is further revealed that the relative photoluminescence intensity ratio of WS2 to MoS2 in our heterobilayer increases monotonically with tensile strain and decreases with compressive strain. We attribute the strain-dependent emission behavior of the heterobilayer to the modulation of the band structure for each monolayer, which is dictated by the alterations in the band gap transitions. These findings present an important pathway toward designing heterostructures and flexible devices.
RESUMO
Interlayer excitons were observed at the heterojunctions in van der Waals heterostructures (vdW HSs). However, it is not known how the excitonic phenomena are affected by the stacking order. Here, we report twist-angle-dependent interlayer excitons in MoSe2/WSe2 vdW HSs based on photoluminescence (PL) and vdW-corrected density functional theory calculations. The PL intensity of the interlayer excitons depends primarily on the twist angle: It is enhanced at coherently stacked angles of 0° and 60° (owing to strong interlayer coupling) but disappears at incoherent intermediate angles. The calculations confirm twist-angle-dependent interlayer coupling: The states at the edges of the valence band exhibit a long tail that stretches over the other layer for coherently stacked angles; however, the states are largely confined in the respective layers for intermediate angles. This interlayer hybridization of the band edge states also correlates with the interlayer separation between MoSe2 and WSe2 layers. Furthermore, the interlayer coupling becomes insignificant, irrespective of twist angles, by the incorporation of a hexagonal boron nitride monolayer between MoSe2 and WSe2.
RESUMO
We synthesized single-phase CoS2 on a large scale by adding graphene oxide of sufficient quantity via the hydrothermal method using cobalt acetate and thioacetamide as precursors; this produced the hybrid of CoS2 with reduced graphene oxide which exhibited high electrocatalytic activity in the hydrogen evolution reaction.
RESUMO
Transition metal dichalcogenides (TMDs) have recently received increasing attention because of their potential applications in semiconducting and optoelectronic devices exhibiting large optical absorptions in the visible range. However, some studies have reported that the grain boundaries of TMDs can be easily degraded by the presence of oxygen in water and by UV irradiation, ozone, and heating under ambient conditions. We herein demonstrate the photodegradation of WSe2 and MoSe2 by laser exposure (532 nm) and the subsequent prevention of this photodegradation by encapsulation with hexagonal boron nitride (h-BN) layers. The photodegradation was monitored by variation in peak intensities in the Raman and photoluminescence spectra. The rapid photodegradation of WSe2 under air occurred at a laser power of ≥0.5 mW and was not observed to any extent at ≤0.1 mW. However, in the presence of a water droplet, the photodegradation of WSe2 was accelerated and took place even at 0.1 mW. We examined the encapsulation of WSe2 with h-BN and found that this prevented photodegradation. However, a single layer of h-BN was not sufficient to fully prevent this photodegradation, and so a triple layer of h-BN was employed. We also demonstrated that the photodegradation of MoSe2 was prevented by encapsulation with h-BN layers. On the basis of X-ray photoelectron spectroscopy and scanning photoemission microscopy data, we determined that this degradation was caused by the photoinduced oxidation of TMDs. These results can be used to develop a general strategy for improving the stability of 2D materials in practical applications.