Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Immunology ; 172(2): 198-209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317426

RESUMO

Host immune response is key for protection in tuberculosis, but the causative agent, Mycobacterium (M.) tuberculosis, manages to survive despite immune surveillance. Key mechanisms of immune protection have been identified, but the role of immunopathology in the peripheral blood of tuberculosis patients remains unclear. Tuberculosis immunopathology in the blood is characterised by patterns of immunosuppression and hyperinflammation. These seemingly contradictory findings and the pronounced heterogeneity made it difficult to interpret the results from previous studies and to derive implications of immunopathology. However, novel approaches based on comprehensive data analyses and revitalisation of an ancient plasma milieu in vitro assay connected inflammation with immunosuppressive factors in tuberculosis. Moreover, interrelations between the aberrant plasma milieu and immune cell pathology were observed. This review provides an overview of studies on changes in plasma milieu and discusses recent findings linking plasma factors to T-cell and monocyte/macrophage pathology in pulmonary tuberculosis patients.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Humanos , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/patologia , Mycobacterium tuberculosis/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia , Monócitos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais
2.
Immunology ; 170(1): 154-166, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37219921

RESUMO

Monocyte-derived macrophages contribute centrally to immune protection in Mycobacterium tuberculosis infection and changes in monocyte phenotype characterize immunopathology in tuberculosis patients. Recent studies highlighted an important role of the plasma milieu in tuberculosis immunopathology. Here, we investigated monocyte pathology in patients with acute tuberculosis and determined tuberculosis plasma milieu effects on phenotype as well as cytokine signalling of reference monocytes. Patients with tuberculosis (n = 37) and asymptomatic contacts (controls n = 35) were recruited as part of a hospital-based study in the Ashanti region of Ghana. Multiplex flow cytometry phenotyping of monocyte immunopathology was performed and effects of individual blood plasma samples on reference monocytes prior to and during treatment were characterized. Concomitantly, cell signalling pathways were analysed to elucidate underlying mechanisms of plasma effects on monocytes. Multiplex flow cytometry visualization characterized changes in monocyte subpopulations and detected higher expression of CD40, CD64 and PD-L1 in monocytes from tuberculosis patients as compared to controls. Aberrant expression normalized during anti-mycobacterial treatment and also CD33 expression decreased markedly. Notably, higher CD33, CD40 and CD64 expression was induced in reference monocytes when cultured in the presence of plasma samples from tuberculosis patients as compared to controls. STAT signalling pathways were affected by the aberrant plasma milieu and higher levels of STAT3 and STAT5 phosphorylation was found in tuberculosis plasma-treated reference monocytes. Importantly, high pSTAT3 levels were associated with high CD33 expression and pSTAT5 correlated with CD40 as well as CD64 expression. These results suggested plasma milieu effects with potential implications on monocyte phenotype and function in acute tuberculosis.


Assuntos
Monócitos , Tuberculose , Humanos , Macrófagos , Antígenos CD40 , Plasma
3.
Eur J Immunol ; 52(6): 958-969, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35279828

RESUMO

Bacterial components and cytokines induce IL-7 receptor (IL-7Rα) expression in monocytes. Aberrant low IL-7Rα expression of monocytes has been identified as a feature of tuberculosis immunopathology. Here, we investigated the mechanisms underlying IL-7Rα regulation of monocytes and tuberculosis serum effects on IL-7Rα expression. Serum samples from tuberculosis patients and healthy controls, cytokine candidates, and mycobacterial components were analyzed for in vitro effects on IL-7Rα expression of primary monocytes, monocyte-derived macrophages (MDM), and monocyte cell lines. IL-7Rα regulation during culture and the role of FoxO1 were characterized. In vitro activation-induced IL-7Rα expression in human monocytes and serum samples from tuberculosis patients boosted IL-7Rα expression. Although pathognomonic tuberculosis cytokines were not associated with serum effects, we identified cytokines (i.e., GM-CSF, IL-1ß, TNF-α, IFN-γ) that induced IL-7Rα expression in monocytes and/or MDM comparable to mycobacterial components. Blocking of cytokine subsets (i.e., IL-1ß/TNF-α in monocytes, GM-CSF in MDM) largely diminished IL-7Rα expression induced by mycobacterial components. Finally, we showed that in vitro-induced IL-7Rα expression was transient and dependent on constitutive FoxO1 expression in primary monocytes and monocyte cell lines. This study demonstrated the crucial roles of cytokines and constitutive FoxO1 expression for transient IL-7Rα expression in monocytes.


Assuntos
Subunidade alfa de Receptor de Interleucina-7/metabolismo , Monócitos , Tuberculose , Células Cultivadas , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Monócitos/metabolismo , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Acta Trop ; 216: 105847, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33497617

RESUMO

Accurate diagnosis of urogenital schistosomiasis is vital for surveillance/control programs as well as achieving the WHO 2012-2020 road map for the total eradication of schistosomiasis. Recombinase polymerase amplification (RPA) has emerged as a rapid and simple molecular tool adaptable for fewer resources with diagnostic accuracy similar to polymerase chain reaction (PCR). This rapid molecular assay employs the use of enzymes for the amplification of nucleic acid taget at a constant temperature. The aim of this study was to validate a real-time RPA assay targeting the Dra 1 repittitive sequence of Schistosoma (S.) haematobium and evaluate its use in urogenital schistosomiasis diagnosis. S. haematobium Dra 1 molecular DNA standard was applied to determine the assay's analytical sensitivity. DNA extracts of S. haematobium, other Schistosoma species, protozoa and bacteria species were used to determine the specificity of the RPA assay. Clinical performance of the assay was validated with a panel of 135 urine samples from volunteers of schistosomiasis endemic communities. The developed assay was evaluated with urine samples extracted by just boiling and with SpeedXtract® DNA extraction kit. A specific fragment of S. haematobium Dra 1 repetitive sequence was amplified within 15 minutes at a constant 42˚C using the developed S. haematobium RPA assay. The detection limit was 15 copies of Dra1 molecular DNA standard per reaction. There was no cross-reaction with other protozoan and bacterial species except Schistosoma species, S. mansoni and S. japonicum. Using 135 urine samples, Schistosoma RPA assay had a clinical sensitivity and specificity of 98.4% (95% CI, 91.6-100) and 100% (95% CI, 94.9-99) respectively when compared to S. haematobium Dra 1 qPCR assay. The diagnostic performance of S. haematobium real-time RPA assay was not affected by the use of crude DNA extracted samples. The S. haematobium RPA assay can serve as an alternative to PCR, especially in low resource settings.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , Esquistossomose Urinária/diagnóstico , Animais , Recursos em Saúde , Humanos , Schistosoma haematobium/genética
5.
Trop Med Infect Dis ; 5(4)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036234

RESUMO

Yaws is a skin debilitating disease caused by Treponema pallidum subspecies pertenue with most cases reported in children. World Health Organization (WHO) aims at total eradication of this disease through mass treatment of suspected cases followed by an intensive follow-up program. However, effective diagnosis is pivotal in the successful implementation of this control program. Recombinase polymerase amplification (RPA), an isothermal nucleic acid amplification technique offers a wider range of differentiation of pathogens including those isolated from chronic skin ulcers with similar characteristics such as Haemophilus ducreyi (H. ducreyi). We have developed a RPA assay for the simultaneous detection of Treponema pallidum (T. pallidum) and H. ducreyi (TPHD-RPA). The assay demonstrated no cross-reaction with other pathogens and enable detection of T. pallidum and H. ducreyi within 15 min at 42 °C. The RPA assay was validated with 49 clinical samples from individuals confirmed to have yaws by serological tests. Comparing the developed assay with commercial multiplex real-time PCR, the assay demonstrated 94% and 95% sensitivity for T. pallidum and H. ducreyi, respectively and 100% specificity. This simple novel TPHD-RPA assay enables the rapid detection of both T. pallidum and H. ducreyi in yaws-like lesions. This test could support the yaws eradication efforts by ensuring reliable diagnosis, to enable monitoring of program success and planning of follow-up interventions at the community level.

6.
Biomed Res Int ; 2019: 5313918, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662981

RESUMO

Bacteria in biofilms are encased in an extracellular polymeric matrix that limits exposure of microbial cells to lethal doses of antimicrobial agents, leading to resistance. In Pseudomonas aeruginosa, biofilm formation is regulated by cell-to-cell communication, called quorum sensing. Quorum sensing facilitates a variety of bacterial physiological functions such as swarming motility and protease, pyoverdine, and pyocyanin productions. Peptide mix from the marine mollusc, Olivancillaria hiatula, has been studied for its antibiofilm activity against Pseudomonas aeruginosa. Microscopy and microtiter plate-based assays were used to evaluate biofilm inhibitory activities. Effect of the peptide mix on quorum sensing-mediated processes was also evaluated. Peptide mix proved to be a good antibiofilm agent, requiring less than 39 µg/mL to inhibit 50% biofilm formation. Micrographs obtained confirmed biofilm inhibition at 1/2 MIC whereas 2.5 mg/mL was required to degrade preformed biofilm. There was a marked attenuation in quorum sensing-mediated phenotypes as well. At 1/2 MIC of peptide, the expression of pyocyanin, pyoverdine, and protease was inhibited by 60%, 72%, and 54%, respectively. Additionally, swarming motility was repressed by peptide in a dose-dependent manner. These results suggest that the peptide mix from Olivancillaria hiatula probably inhibits biofilm formation by interfering with cell-to-cell communication in Pseudomonas aeruginosa.


Assuntos
Comunicação Celular/efeitos dos fármacos , Moluscos/metabolismo , Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Piocianina/farmacologia , Percepção de Quorum/efeitos dos fármacos
7.
Diagnostics (Basel) ; 9(4)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779247

RESUMO

Isothermal amplification techniques such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) for diagnosing Buruli ulcer, a necrotic skin disease caused by Mycobacterium ulcerans, have renewed hope for the molecular diagnosis of clinically suspected Buruli ulcer cases in endemic districts. If these techniques are applied at district-level hospitals or clinics, they will help facilitate early case detection with prompt treatment, thereby reducing disability and associated costs of disease management. The accuracy as well as the application of these molecular techniques at point of need is dependent on simple and fast DNA extraction. We have modified and tested a rapid extraction protocol for use with an already developed recombinase polymerase amplification assay. The entire procedure from "sample in, extraction and DNA amplification" was conducted in a mobile suitcase laboratory within 40 min. The DNA extraction procedure was performed within 15 min, with only two manipulation/pipetting steps needed. The diagnostic sensitivity and specificity of this extraction protocol together with M. ulcerans RPA in comparison with standard DNA extraction with real-time PCR was 87% (n = 26) and 100% (n = 13), respectively. We have established a simple, fast and efficient protocol for the extraction and detection of M. ulcerans DNA in clinical samples that is adaptable to field conditions.

8.
PLoS Negl Trop Dis ; 13(2): e0007155, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707706

RESUMO

BACKGROUND: Access to an accurate diagnostic test for Buruli ulcer (BU) is a research priority according to the World Health Organization. Nucleic acid amplification of insertion sequence IS2404 by polymerase chain reaction (PCR) is the most sensitive and specific method to detect Mycobacterium ulcerans (M. ulcerans), the causative agent of BU. However, PCR is not always available in endemic communities in Africa due to its cost and technological sophistication. Isothermal DNA amplification systems such as the recombinase polymerase amplification (RPA) have emerged as a molecular diagnostic tool with similar accuracy to PCR but having the advantage of amplifying a template DNA at a constant lower temperature in a shorter time. The aim of this study was to develop RPA for the detection of M. ulcerans and evaluate its use in Buruli ulcer disease. METHODOLOGY AND PRINCIPAL FINDINGS: A specific fragment of IS2404 of M. ulcerans was amplified within 15 minutes at a constant 42°C using RPA method. The detection limit was 45 copies of IS2404 molecular DNA standard per reaction. The assay was highly specific as all 7 strains of M. ulcerans tested were detected, and no cross reactivity was observed to other mycobacteria or clinically relevant bacteria species. The clinical performance of the M. ulcerans (Mu-RPA) assay was evaluated using DNA extracted from fine needle aspirates or swabs taken from 67 patients in whom BU was suspected and 12 patients with clinically confirmed non-BU lesions. All results were compared to a highly sensitive real-time PCR. The clinical specificity of the Mu-RPA assay was 100% (95% CI, 84-100), whiles the sensitivity was 88% (95% CI, 77-95). CONCLUSION: The Mu-RPA assay represents an alternative to PCR, especially in areas with limited infrastructure.


Assuntos
DNA Bacteriano/isolamento & purificação , Mycobacterium ulcerans/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Bacteriano/genética , Mycobacterium ulcerans/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Biomed Res Int ; 2018: 6010572, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671464

RESUMO

Increasing reports of infectious diseases worldwide have become a global concern in recent times. Depleted antibiotic pipelines, rapid and complex cases of antimicrobial resistance, and emergence and re-emergence of infectious disease have necessitated an urgent need for the development of new antimicrobial therapeutics, preferably with novel modes of action. Due to their distinct mode of action, antimicrobial peptides offer an interesting alternative to conventional antibiotics to deal with the problems enumerated. In this study, the antimicrobial potential of the peptide extract from the marine mollusc, Olivancillaria hiatula, was evaluated in vitro. Agar diffusion and broth dilution techniques were used to evaluate microbial susceptibility to the peptide extract. Microplate-based assays were also used to investigate time-dependent growth inhibition profiles of microbes in the presence of peptide and evaluate the peptide's ability to modulate the activities of standard antibiotics. Both Gram-positive and Gram-negative bacteria were inhibited by the peptide extract in the agar diffusion assay. The minimum inhibitory concentration (MIC) of peptide against test microorganisms was between 0.039 and 2.5 mg/mL. At the MIC, the peptide extract was bacteriostatic towards all tested microorganisms but bactericidal to Staphylococcus aureus. In the presence of the peptide extract, a prolonged lag phase was observed for all microbes, similar to standard ciprofloxacin. When administered together, peptide extracts enhanced the activities of ciprofloxacin and cefotaxime and were antagonistic towards erythromycin but indifferent towards metronidazole. Taken together, these results show the broad-spectrum antibacterial activity of peptide extract from Olivancillaria hiatula and demonstrate that antimicrobial peptides can be employed in combination with some conventional antibiotics for improved effects.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Produtos Biológicos/farmacologia , Moluscos/metabolismo , Peptídeos/farmacologia , Animais , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA