Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 760041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659326

RESUMO

Leaf angle is one of the most important agronomic traits in rice, and changes in leaf angle can alter plant architecture to affect photosynthetic efficiency and thus determine grain yield. Therefore, it is important to identify key genes controlling leaf angle and elucidate the molecular mechanisms to improve rice yield. We obtained a mutant rela (regulator of leaf angle) with reduced leaf angle in rice by EMS mutagenesis, and map-based cloning revealed that OsRELA encodes a protein of unknown function. Coincidentally, DENSE AND ERECT PANICLE 2 (DEP2) was reported in a previous study with the same gene locus. RNA-seq analysis revealed that OsRELA is involved in regulating the expression of ILI and Expansin family genes. Biochemical and genetic analyses revealed that OsRELA is able to interact with OsLIC, a negative regulator of BR signaling, through its conserved C-terminal domain, which is essential for OsRELA function in rice. The binding of OsRELA can activate the expression of downstream genes repressed by OsLIC, such as OsILI1, a positive regulator of leaf inclination in rice. Therefore, our results suggest that OsRELA can act as a transcriptional regulator and is involved in the regulation of leaf inclination by regulating the transcriptional activity of OsLIC.

2.
Sci Technol Adv Mater ; 11(3): 035002, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877339

RESUMO

A phosphorescent material in the form of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres was prepared by homogeneous precipitation using monodispersed carbon spheres as hard templates. Y2O3:Eu3+ hollow microspheres were first synthesized to serve as the precursor. Y2O2S:Eu3+, Mg2+, Ti4+ powders were obtained by calcinating the precursor in a CS2 atmosphere. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction measurements confirmed the purity of the Y2O2S phase. Electron microscopy observations revealed that the Y2O2S:Eu3+, Mg2+, Ti4+ particles inherited the hollow spherical shape from the precursor after being calcined in a CS2 atmosphere and that they had a diameter of 350-450 nm and a wall thickness of about 50-80 nm. After ultraviolet radiation at 265 or 325 nm for 5 min, the particles emitted strong red long-lifetime phosphorescence originating from Eu3+ ions. This phosphorescence is associated with the trapping of charge carriers by Ti4+ and Mg2+ ions.

3.
J Med Food ; 20(6): 557-567, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28472605

RESUMO

Abelmoschus manihot (L.) Medic is an edible hibiscus that is rich in flavonoids, and its use as Chinese herbal medicine for the treatment of diseases and health maintenance dates back to ancient times. The chemical compositions of total flavonoid of A. manihot (L.) Medic flower extract (TFAE) were identified and determined by high performance liquid chromatography (HPLC). The effects of TFAE on antioxidative activities in a d-galactose (d-gal)-induced mouse model and Nrf2-mediated antioxidant responses were evaluated. Male Kunming mice were randomly divided into normal control group, d-gal aging model group, d-gal+ascorbic acid group that served as a positive control, and d-gal+TFAE (40, 80, and 160 mg TFAE/kg) group. After 42 days, the antioxidant effects of these treatments were determined by biochemical studies, Western blotting, quantitative real-time polymerase chain reaction, and histological analysis. The results showed that the groups administered TFAE exhibited significant elevation in liver activities of antioxidant enzymes, including catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and decreased malondialdehyde (MDA) production in a dose-dependent manner compared with the d-gal-induced model group. Expression of Nrf2 and its target antioxidants (HO-1 and NQO1) was manifestly increased by TFAE treatment. TFAE also increased mRNA expression of GPx, SOD, and CAT and decreased tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). Furthermore, the microstructure of livers in TFAE-administered mice was obviously improved as compared with the d-gal model group. These results suggest that TFAE protects mice against d-gal-induced oxidative stress, and the effect is related to the activation of Nrf2 signaling.


Assuntos
Abelmoschus/química , Medicamentos de Ervas Chinesas/administração & dosagem , Flavonoides/administração & dosagem , Galactose/efeitos adversos , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Medicamentos de Ervas Chinesas/análise , Flavonoides/análise , Flores/química , Glutationa Peroxidase/metabolismo , Fígado/metabolismo , Malondialdeído/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Ratos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA