Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 242: 120281, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37422979

RESUMO

The poor bacterial loading capacity and biocompatibility of the anode lead to weak electricity production performance of microbial fuel cells (MFCs). Inspired by kelp, we developed a double-layer hydrogel bioanode based on sodium alginate (SA). The inner hydrogel layer of encapsulated Fe3O4 and electroactive microorganisms (EAMs) was used as the bioelectrochemical catalytic layer. The outer hydrogel layer formed by cross-linking SA with polyvinyl alcohol (PVA) was used as the protective layer. The 3D porous structure of the inner hydrogel formed based on Fe3O4 facilitated the electroactive bacteria colonization and electron transfer, while the high structural toughness, salt-resistance and antibacterial properties of the outer highly cross-linked hydrogel served to protect the catalytic layer for stable electricity production. When high-salt waste leachate was used as the nutrient, the amazing open-circuit voltage (OCV) of 1.17 V and the operating voltage of 781 mV were brought by the double-layer hydrogel bioanode PVA@SA&Fe3O4/EAMs@SA.


Assuntos
Fontes de Energia Bioelétrica , Salinidade , Alginatos/química , Hidrogéis , Eletricidade , Álcool de Polivinil/química , Cloreto de Sódio
2.
Environ Sci Pollut Res Int ; 28(28): 37142-37157, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33709317

RESUMO

In order to explore a superior washcoat material to give full play to the catalytic activity of perovskite active components on the monolithic catalysts, three novel types of LaCoO3/washcoat/cordierite monolith catalysts were prepared by a facile two-step procedure which employed the cordierite honeycomb ceramic as the monolith substrate, the nano-oxides (ZrO2, ɤ-Al2O3, TiO2) as the washcoat, and the perovskite of LaCoO3 as the active components. The blank cordierite, powdered LaCoO3, semi-manufactured monolithic catalysts (washcoat/cordierite), and manufactured monolithic catalysts (LaCoO3/washcoat/cordierite) were characterized by XRD, SEM, XPS, N2 adsorption-desorption, H2-TPR, and ultrasonic test, and their catalytic activities and catalytic stability were evaluated by the toluene oxidation test. The research results indicate that the nanoparticles coated on the cordierite substrate as the washcoat can give full play to the catalytic ability of the LaCoO3 active components and also showed high catalytic stability. However, the catalytic properties of the monolithic catalysts vary notably with the species of nano-washcoat. Among all the catalysts, the porous honeycomb surface structure, uniform distribution, high ratio of surface adsorbed oxygen, and strong reducing ability together give the LaCoO3/ZrO2/cordierite monolithic catalyst the highest catalytic activity on the oxidation of toluene at low temperature, which could be attributed to the excellent interactions of perovskite and nano-ZrO2 washcoat. Therefore, the nano-oxides, especially the nano-ZrO2, have a broad practical application potential for toluene oxidation at low temperature as the washcoat of perovskite-based monolithic catalysts.


Assuntos
Compostos de Cálcio , Óxidos , Catálise , Oxirredução , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA