Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
RNA ; 29(11): 1673-1690, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562960

RESUMO

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.


Assuntos
Ribonucleoproteína Nuclear Pequena U7 , Ribonucleoproteínas Nucleares Pequenas , Animais , Ribonucleoproteína Nuclear Pequena U7/química , Metilação , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Histonas/metabolismo , Arginina/química
2.
Nucleic Acids Res ; 50(7): 4148-4160, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35333330

RESUMO

AlkB homologue 5 (ALKBH5) is a ferrous iron and 2-oxoglutarate dependent oxygenase that demethylates RNA N6-methyladenosine (m6A), a post-transcriptional RNA modification with an emerging set of regulatory roles. Along with the fat mass and obesity-associated protein (FTO), ALKBH5 is one of only two identified human m6A RNA oxidizing enzymes and is a potential target for cancer treatment. Unlike FTO, ALKBH5 efficiently catalyzes fragmentation of its proposed nascent hemiaminal intermediate to give formaldehyde and a demethylated nucleoside. A detailed analysis of the molecular mechanisms used by ALKBH5 for substrate recognition and m6A demethylation is lacking. We report three crystal structures of ALKBH5 in complex with an m6A-ssRNA 8-mer substrate and supporting biochemical analyses. Strikingly, the single-stranded RNA substrate binds to the active site of ALKBH5 in a 5'-3' orientation that is opposite to single-stranded or double-stranded DNA substrates observed for other AlkB subfamily members, including single-stranded DNA bound to FTO. The combined structural and biochemical results provide insight into the preference of ALKBH5 for substrates containing a (A/G)m6AC consensus sequence motif. The results support a mechanism involving formation of an m6A hemiaminal intermediate, followed by efficient ALKBH5 catalyzed demethylation, enabled by a proton shuttle network involving Lys132 and Tyr139.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , RNA , Adenosina/análogos & derivados , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/química , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Desmetilação , Humanos , RNA/química
3.
RNA ; 26(10): 1345-1359, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554553

RESUMO

Metazoan replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP, an RNA-guided endonuclease that contains U7 snRNA, seven proteins of the Sm ring, FLASH, and four polyadenylation factors: symplekin, CPSF73, CPSF100, and CstF64. A fully recombinant U7 snRNP was recently reconstituted from all 13 components for functional and structural studies and shown to accurately cleave histone pre-mRNAs. Here, we analyzed the activity of recombinant U7 snRNP in more detail. We demonstrate that in addition to cleaving histone pre-mRNAs endonucleolytically, reconstituted U7 snRNP acts as a 5'-3' exonuclease that degrades the downstream product generated from histone pre-mRNAs as a result of the endonucleolytic cleavage. Surprisingly, recombinant U7 snRNP also acts as an endonuclease on single-stranded DNA substrates. All these activities depend on the ability of U7 snRNA to base-pair with the substrate and on the presence of the amino-terminal domain (NTD) of symplekin in either cis or trans, and are abolished by mutations within the catalytic center of CPSF73, or by binding of the NTD to the SSU72 phosphatase of RNA polymerase II. Altogether, our results demonstrate that recombinant U7 snRNP functionally mimics its endogenous counterpart and provide evidence that CPSF73 is both an endonuclease and a 5'-3' exonuclease, consistent with the activity of other members of the ß-CASP family. Our results also raise the intriguing possibility that CPSF73 may be involved in some aspects of DNA metabolism in vivo.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/genética , Endonucleases/genética , Exonucleases/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U7/genética , Animais , Histonas/genética , Camundongos , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética
4.
Nucleic Acids Res ; 48(3): 1508-1530, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31819999

RESUMO

In animal cells, replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP consisting of two core components: a ∼60-nucleotide U7 snRNA and a ring of seven proteins, with Lsm10 and Lsm11 replacing the spliceosomal SmD1 and SmD2. Lsm11 interacts with FLASH and together they recruit the endonuclease CPSF73 and other polyadenylation factors, forming catalytically active holo U7 snRNP. Here, we assembled core U7 snRNP bound to FLASH from recombinant components and analyzed its appearance by electron microscopy and ability to support histone pre-mRNA processing in the presence of polyadenylation factors from nuclear extracts. We demonstrate that semi-recombinant holo U7 snRNP reconstituted in this manner has the same composition and functional properties as endogenous U7 snRNP, and accurately cleaves histone pre-mRNAs in a reconstituted in vitro processing reaction. We also demonstrate that the U7-specific Sm ring assembles efficiently in vitro on a spliceosomal Sm site but the engineered U7 snRNP is functionally impaired. This approach offers a unique opportunity to study the importance of various regions in the Sm proteins and U7 snRNA in 3' end processing of histone pre-mRNAs.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U7/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Sequência de Aminoácidos/genética , Animais , Núcleo Celular/genética , Drosophila/genética , Histonas/genética , Humanos , Camundongos , Ligação Proteica/genética , Precursores de RNA/genética , Spliceossomos/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
5.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37215023

RESUMO

U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50 and pICln known to methylate arginines in the C-terminal regions of the Sm proteins B, D1 and D3 during the spliceosomal Sm ring assembly. Both biochemical and Cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the N-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an N-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.

6.
Methods Enzymol ; 655: 291-324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183127

RESUMO

In animal cells, replication-dependent histone pre-mRNAs are processed at the 3'-end by an endonucleolytic cleavage carried out by the U7 snRNP, a machinery that contains the U7 snRNA and many protein subunits. Studies on the composition of this machinery and understanding of its role in 3'-end processing were greatly facilitated by the development of an in vitro system utilizing nuclear extracts from mammalian cells 35 years ago and later from Drosophila cells. Most recently, recombinant expression and purification of the components of the machinery have enabled the full reconstitution of an active machinery and its complex with a model pre-mRNA substrate, using 13 proteins and 2 RNAs, and the determination of the structure of this active machinery. This chapter presents protocols for preparing nuclear extracts containing endogenous processing machinery, for assembling semi-recombinant and fully reconstituted machineries, and for histone pre-mRNA 3'-end processing assays with these samples.


Assuntos
Histonas , Precursores de RNA , Animais , Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleoproteína Nuclear Pequena U7/genética , Ribonucleoproteína Nuclear Pequena U7/metabolismo
7.
J Med Chem ; 64(22): 16609-16625, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34762429

RESUMO

FTO catalyzes the Fe(II) and 2-oxoglutarate (2OG)-dependent modification of nucleic acids, including the demethylation of N6-methyladenosine (m6A) in mRNA. FTO is a proposed target for anti-cancer therapy. Using information from crystal structures of FTO in complex with 2OG and substrate mimics, we designed and synthesized two series of FTO inhibitors, which were characterized by turnover and binding assays, and by X-ray crystallography with FTO and the related bacterial enzyme AlkB. A potent inhibitor employing binding interactions spanning the FTO 2OG and substrate binding sites was identified. Selectivity over other clinically targeted 2OG oxygenases was demonstrated, including with respect to the hypoxia-inducible factor prolyl and asparaginyl hydroxylases (PHD2 and FIH) and selected JmjC histone demethylases (KDMs). The results illustrate how structure-based design can enable the identification of potent and selective 2OG oxygenase inhibitors and will be useful for the development of FTO inhibitors for use in vivo.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Antineoplásicos/química , Cristalografia por Raios X , Histona Desmetilases/metabolismo , Humanos , Oxigenases de Função Mista/metabolismo , Relação Estrutura-Atividade
8.
ACS Cent Sci ; 7(5): 792-802, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34075346

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global threat to human health. Using a multidisciplinary approach, we identified and validated the hepatitis C virus (HCV) protease inhibitor simeprevir as an especially promising repurposable drug for treating COVID-19. Simeprevir potently reduces SARS-CoV-2 viral load by multiple orders of magnitude and synergizes with remdesivir in vitro. Mechanistically, we showed that simeprevir not only inhibits the main protease (Mpro) and unexpectedly the RNA-dependent RNA polymerase (RdRp) but also modulates host immune responses. Our results thus reveal the possible anti-SARS-CoV-2 mechanism of simeprevir and highlight the translational potential of optimizing simeprevir as a therapeutic agent for managing COVID-19 and future outbreaks of CoV.

9.
Science ; 367(6478): 700-703, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32029631

RESUMO

The 3'-end processing machinery for metazoan replication-dependent histone precursor messenger RNAs (pre-mRNAs) contains the U7 small nuclear ribonucleoprotein and shares the key cleavage module with the canonical cleavage and polyadenylation machinery. We reconstituted an active human histone pre-mRNA processing machinery using 13 recombinant proteins and two RNAs and determined its structure by cryo-electron microscopy. The overall structure is highly asymmetrical and resembles an amphora with one long handle. We captured the pre-mRNA in the active site of the endonuclease, the 73-kilodalton subunit of the cleavage and polyadenylation specificity factor, poised for cleavage. The endonuclease and the entire cleavage module undergo extensive rearrangements for activation, triggered through the recognition of the duplex between the authentic pre-mRNA and U7 small nuclear RNA (snRNA). Our study also has notable implications for understanding canonical and snRNA 3'-end processing.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/química , Histonas/genética , Clivagem do RNA , Precursores de RNA/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Humanos , Poliadenilação , RNA Nuclear Pequeno/metabolismo , Proteínas Recombinantes , Ribonucleoproteína Nuclear Pequena U7/química
10.
Chem Sci ; 11(41): 11266-11273, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34094367

RESUMO

Traditional fluorescent peptide chemical syntheses hinge on the use of limited fluorescent/dye-taggable unnatural amino acids and entail multiple costly purifications. Here we describe a facile and efficient protocol for in situ construction of dipyrrins on the N-terminus with 20 natural and five unnatural amino acids and the lysine's side chain of selected peptides/peptide drugs through Fmoc-based solid-phase peptide synthesis. The new strategy enables the direct formation of boron-dipyrromethene (BODIPY)-peptide conjugates from simple aldehyde and pyrrole derivatives without pre-functionalization, and only requires a single-time chromatographic purification at the final stage. As a model study, synthesized EBNA1-targeting BODIPY1-Pep4 demonstrates intact selectivity in vitro, responsive fluorescence enhancement, and higher light cytotoxicity due to the photo-generation of cytotoxic singlet oxygen. This work offers a novel practical synthetic platform for fluorescent peptides for multifaceted biomedical applications.

11.
PLoS One ; 12(10): e0186034, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29020104

RESUMO

Unlike canonical pre-mRNAs, animal replication-dependent histone pre-mRNAs lack introns and are processed at the 3'-end by a mechanism distinct from cleavage and polyadenylation. They have a 3' stem loop and histone downstream element (HDE) that are recognized by stem-loop binding protein (SLBP) and U7 snRNP, respectively. The N-terminal domain (NTD) of Lsm11, a component of U7 snRNP, interacts with FLASH NTD and these two proteins recruit the histone cleavage complex containing the CPSF-73 endonuclease for the cleavage reaction. Here, we determined crystal structures of FLASH NTD and found that it forms a coiled-coil dimer. Using solution light scattering, we characterized the stoichiometry of the FLASH NTD-Lsm11 NTD complex and found that it is a 2:1 heterotrimer, which is supported by observations from analytical ultracentrifugation and crosslinking.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Histonas/metabolismo , Multimerização Proteica , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Fenômenos Biofísicos , Cromatografia em Gel , Cristalografia por Raios X , Cisteína/genética , Luz , Mutação/genética , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Espalhamento de Radiação , Alinhamento de Sequência , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA