Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(11): 2670-2675, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483268

RESUMO

Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Clima Desértico , Solo/química , América do Sul
2.
PNAS Nexus ; 3(4): pgae123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655503

RESUMO

Desert environments constitute one of the largest and yet most fragile ecosystems on Earth. Under the absence of regular precipitation, microorganisms are the main ecological component mediating nutrient fluxes by using soil components, like minerals and salts, and atmospheric gases as a source for energy and water. While most of the previous studies on microbial ecology of desert environments have focused on surface environments, little is known about microbial life in deeper sediment layers. Our study is extending the limited knowledge about microbial communities within the deeper subsurface of the hyperarid core of the Atacama Desert. By employing intracellular DNA extraction and subsequent 16S rRNA sequencing of samples collected from a soil pit in the Yungay region of the Atacama Desert, we unveiled a potentially viable microbial subsurface community residing at depths down to 4.20 m. In the upper 80 cm of the playa sediments, microbial communities were dominated by Firmicutes taxa showing a depth-related decrease in biomass correlating with increasing amounts of soluble salts. High salt concentrations are possibly causing microbial colonization to cease in the lower part of the playa sediments between 80 and 200 cm depth. In the underlying alluvial fan deposits, microbial communities reemerge, possibly due to gypsum providing an alternative water source. The discovery of this deeper subsurface community is reshaping our understanding of desert soils, emphasizing the need to consider subsurface environments in future explorations of arid ecosystems.

3.
Sci Rep ; 12(1): 12394, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859102

RESUMO

Polygonal networks occur on various terrestrial and extraterrestrial surfaces holding valuable information on the pedological and climatological conditions under which they develop. However, unlike periglacial polygons that are commonly used as an environmental proxy, the information that polygons in the hyper-arid Atacama Desert can provide is little understood. To promote their use as a proxy, we investigated a polygonal network within an inactive channel that exhibits uncommonly diverse surface morphologies and mineral compositions, using geochemical and remote sensing techniques. Our findings show that the polygons belong to a continuous network of the same genetic origin. Their differences result from post-formational differential eolian erosion up to 50 cm depth, exposing indurated subsurface horizons rich in sulfate or nitrate and chloride. Their location in an ancient channel could lead to the misinterpretation of fluvial polygon erosion, however, we find no such signs but evidence for aqueous resurfacing of microtopography by fog and minimal rainwater infiltration. Our findings extend the use of polygons as proxies in the Atacama Desert, indicating saline soils and hyper-arid conditions. We conclude that this example of polygon erosion can guide future polygon research, especially regarding the use of erosional surfaces on Earth and beyond to gain valuable subsurface insights.


Assuntos
Clima Desértico , Microbiologia do Solo , Planeta Terra , Minerais , Solo
4.
Microbiome ; 9(1): 234, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836555

RESUMO

BACKGROUND: The hyperarid core of the Atacama Desert is an extremely harsh environment thought to be colonized by only a few heterotrophic bacterial species. Current concepts for understanding this extreme ecosystem are mainly based on the diversity of these few species, yet a substantial area of the Atacama Desert hyperarid topsoil is covered by expansive boulder accumulations, whose underlying microbiomes have not been investigated so far. With the hypothesis that these sheltered soils harbor uniquely adapted microbiomes, we compared metagenomes and geochemistry between soils below and beside boulders across three distantly located boulder accumulations in the Atacama Desert hyperarid core. RESULTS: Genome-resolved metagenomics of eleven samples revealed substantially different microbial communities in soils below and beside boulders, despite the presence of shared species. Archaea were found in significantly higher relative abundance below the boulders across all samples within distances of up to 205 km. These key taxa belong to a novel genus of ammonia-oxidizing Thaumarchaeota, Candidatus Nitrosodeserticola. We resolved eight mid-to-high quality genomes of this genus and used comparative genomics to analyze its pangenome and site-specific adaptations. Ca. Nitrosodeserticola genomes contain genes for ammonia oxidation, the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway, and acetate utilization indicating a chemolithoautotrophic and mixotrophic lifestyle. They also possess the capacity for tolerating extreme environmental conditions as highlighted by the presence of genes against oxidative stress and DNA damage. Site-specific adaptations of the genomes included the presence of additional genes for heavy metal transporters, multiple types of ATP synthases, and divergent genes for aquaporins. CONCLUSION: We provide the first genomic characterization of hyperarid soil microbiomes below the boulders in the Atacama Desert, and report abundant and highly adapted Thaumarchaeaota with ammonia oxidation and carbon fixation potential. Ca. Nitrosodeserticola genomes provide the first metabolic and physiological insight into a thaumarchaeal lineage found in globally distributed terrestrial habitats characterized by various environmental stresses. We consequently expand not only the known genetic repertoire of Thaumarchaeota but also the diversity and microbiome functioning in hyperarid ecosystems. Video Abstract.


Assuntos
Clima Desértico , Microbiota , Archaea/genética , Bactérias/genética , Microbiologia do Solo
5.
Front Microbiol ; 11: 1284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733393

RESUMO

Microorganisms living in sub-zero environments can benefit from the presence of dissolved salts, as they significantly increase the temperature range of liquid water by lowering the freezing point. However, high concentrations of salts can reduce microbial growth and survival, and can evoke a physiological stress response. It remains poorly understood how the physicochemical parameters of brines (e.g. water activity, ionic strength, solubility and hydration shell strength between the ions and the surrounding water molecules) influence the survival of microorganisms. We used the cryo- and halotolerant bacterial strain Planococcus halocryophilus as a model organism to evaluate the degree of stress different salts assert. Cells were incubated in liquid media at -15°C containing single salts at eutectic concentrations (CaCl2, LiCl, LiI, MgBr2, MgCl2, NaBr, NaCl, NaClO4 and NaI). Four of these salts (LiCl, LiI, MgBr2 and NaClO4) were also investigated at concentrations with a low water activity (0.635) and, separately, with a high ionic strength (8 mol/L). Water activity of all solutions was measured at -15°C. This is the first time that water activity has been measured for such a large number of liquid salt solutions at constant sub-zero temperatures (-15°C). Colony-Forming Unit (CFU) counts show that the survival of P. halocryophilus has a negative correlation with the salt concentration, molecular weight of the anion and anion radius; and a positive correlation with the water activity and anions' hydration shell strength. The survival of P. halocryophilus did not show a significant correlation with the ionic strength, the molecular weight of the cation, the hydrated and unhydrated cation and hydrated anion radius, and the cations' hydration bond length. Thus, the water activity, salt concentration and anion parameters play the largest role in the survival of P. halocryophilus in concentrated brines. These findings improve our understanding of the limitations of microbial life in saline environments, which provides a basis for better evaluation of the habitability of extraterrestrial environments such as Martian cryobrines.

6.
Sci Rep ; 10(1): 6, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913316

RESUMO

The current understanding of the Martian surface indicates that briny environments at the near-surface are temporarily possible, e.g. in the case of the presumably deliquescence-driven Recurring Slope Lineae (RSL). However, whether such dynamic environments are habitable for terrestrial organisms remains poorly understood. This hypothesis was tested by developing a Closed Deliquescence System (CDS) consisting of a mixture of desiccated Martian Regolith Analog (MRA) substrate, salts, and microbial cells, which over the course of days became wetted through deliquescence. The methane produced via metabolic activity for three methanogenic archaea: Methanosarcina mazei, M. barkeri and M. soligelidi, was measured after exposing them to three different MRA substrates using either NaCl or NaClO4 as a hygroscopic salt. Our experiments showed that (1) M. soligelidi rapidly produced methane at 4 °C, (2) M. barkeri produced methane at 28 °C though not at 4 °C, (3) M. mazei was not metabolically reactivated through deliquescence, (4) none of the species produced methane in the presence of perchlorate, and (5) all species were metabolically most active in the phyllosilicate-containing MRA. These results emphasize the importance of the substrate, microbial species, salt, and temperature used in the experiments. Furthermore, we show here for the first time that water provided by deliquescence alone is sufficient to rehydrate methanogenic archaea and to reactivate their metabolism under conditions roughly analogous to the near-subsurface Martian environment.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Marte , Metano/metabolismo , Methanosarcina/fisiologia , Sais/química , Água/química , Crescimento Quimioautotrófico , Metano/análise
7.
Astrobiology ; 19(11): 1377-1387, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31386567

RESUMO

Extraterrestrial environments encompass physicochemical conditions and habitats that are unknown on Earth, such as perchlorate-rich brines that can be at least temporarily stable on the martian surface. To better understand the potential for life in these cold briny environments, we determined the maximum salt concentrations suitable for growth (MSCg) of six different chloride and perchlorate salts at 25°C and 4°C for the extremotolerant cold- and salt-adapted bacterial strain Planococcus halocryophilus. Growth was measured through colony-forming unit (CFU) counts, while cellular and colonial phenotypic stress responses were observed through visible light, fluorescence, and scanning electron microscopy. Our data show the following: (1) The tolerance to high salt concentrations can be increased through a stepwise inoculation toward higher concentrations. (2) Ion-specific factors are more relevant for the growth limitation of P. halocryophilus in saline solutions than single physicochemical parameters like ionic strength or water activity. (3) P. halocryophilus shows the highest microbial sodium perchlorate tolerance described so far. However, (4) MSCg values are higher for all chlorides compared to perchlorates. (5) The MSCg for calcium chloride was increased by lowering the temperature from 25°C to 4°C, while sodium- and magnesium-containing salts can be tolerated at 25°C to higher concentrations than at 4°C. (6) Depending on salt type and concentration, P. halocryophilus cells show distinct phenotypic stress responses such as novel types of colony morphology on agar plates and biofilm-like cell clustering, encrustation, and development of intercellular nanofilaments. This study, taken in context with previous work on the survival of extremophiles in Mars-like environments, suggests that high-concentrated perchlorate brines on Mars might not be habitable to any present organism on Earth, but extremophilic microorganisms might be able to evolve thriving in such environments.


Assuntos
Resposta ao Choque Frio/fisiologia , Meio Ambiente Extraterreno/química , Extremófilos/fisiologia , Planococáceas/fisiologia , Estresse Salino/fisiologia , Cloretos/efeitos adversos , Temperatura Baixa/efeitos adversos , Ambientes Extremos , Marte , Concentração Osmolar , Percloratos/efeitos adversos , Sais/efeitos adversos , Sais/química
8.
Astrobiology ; 18(9): 1171-1180, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29664686

RESUMO

It is well known that dissolved salts can significantly lower the freezing point of water and thus extend habitability to subzero conditions. However, most investigations thus far have focused on sodium chloride as a solute. In this study, we report on the survivability of the bacterial strain Planococcus halocryophilus in sodium, magnesium, and calcium chloride or perchlorate solutions at temperatures ranging from +25°C to -30°C. In addition, we determined the survival rates of P. halocryophilus when subjected to multiple freeze/thaw cycles. We found that cells suspended in chloride-containing samples have markedly increased survival rates compared with those in perchlorate-containing samples. In both cases, the survival rates increase with lower temperatures; however, this effect is more pronounced in chloride-containing samples. Furthermore, we found that higher salt concentrations increase survival rates when cells are subjected to freeze/thaw cycles. Our findings have important implications not only for the habitability of cold environments on Earth but also for extraterrestrial environments such as that of Mars, where cold brines might exist in the subsurface and perhaps even appear temporarily at the surface such as at recurring slope lineae.


Assuntos
Temperatura Baixa , Viabilidade Microbiana , Planococcus (Bactéria)/crescimento & desenvolvimento , Sais/química , Cloretos/análise , Congelamento , Concentração Osmolar , Percloratos/química , Água
9.
Front Microbiol ; 8: 2011, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085352

RESUMO

The evolutionary adaptability of life to extreme environments is astounding given that all life on Earth is based on the same fundamental biochemistry. The range of some physicochemical parameters on Earth exceeds the ability of life to adapt, but stays within the limits of life for other parameters. Certain environmental conditions such as low water availability in hyperarid deserts on Earth seem to be close to the limit of biological activity. A much wider range of environmental parameters is observed on planetary bodies within our Solar System such as Mars or Titan, and presumably even larger outside of our Solar System. Here we review the adaptability of life as we know it, especially regarding temperature, pressure, and water activity. We use then this knowledge to outline the range of possible habitable environments for alien planets and moons and distinguish between a variety of planetary environment types. Some of these types are present in our Solar System, others are hypothetical. Our schematic categorization of alien habitats is limited to life as we know it, particularly regarding to the use of solvent (water) and energy source (light and chemical compounds).

10.
Cell Biochem Biophys ; 40(3): 277-88, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15211028

RESUMO

On the basis of acquired thermotolerance and cryotolerance, the optimal heat shock and cold shock temperatures have been determined for Deinococcus radiodurans. A heat shock at 42 degrees C maximized survival at the lethal temperature of 52 degrees C and a cold shock at 20 degrees C maximized survival after repeated freeze-thawing. Enhanced survival from heat shock was found to be strongly dependent on growth stage, with its greatest effect shortly after phase. Increased synthesis of a total of 67 proteins during heat shock and 42 proteins during cold shock were observed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and autoradiography. Eight of the most highly induced heat shock proteins shown by 2D PAGE were identified by MALDI-MS as Hsp20, GroEL, DnaK, SodA, Csp, Protease I, and two proteins of unknown function.


Assuntos
Deinococcus/metabolismo , Autorradiografia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico/isolamento & purificação , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Orig Life Evol Biosph ; 32(3): 255-74, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12227430

RESUMO

Some molecules, particularly aromatics, have high molar extinction coefficients at wavelengths in the damaging ultraviolet radiation region of the spectrum between 200 and 400 nm. Thus, under a UV radiation flux in which these wavelengths are represented, it could be argued that a selection pressure would exist for a UV transparent biochemistry in which they were not represented. This hypothesis is explored using data made available from proteomics, focusing particularly on tryptophan, against which a selection pressure could exist on present-day Earth as a result of its absorbance shoulder at wavelengths greater than 290 nm. The abundance of tryptophan in whole proteomes is lower than expected from the degeneracy of the genetic code. A lower usage of tryptophan is found in the cytochrome c oxidase polypeptide I of UV-exposed organisms compared to nocturnal and subterranean organisms, but not in ATP synthase chain A. Examination of the amino acid composition of photolyase, an enzyme that requires exposure to light to function, shows that the tryptophan abundances exceed those of the total proteome of most organisms and the abundances expected from the degeneracy of the genetic code. This is also true for cytochrome c oxidase, another enzyme that makes extensive use of the electron transfer properties of tryptophan. We suggest that the selection pressure for the use of tryptophan caused, among other factors, by the uses of delocalised pi-electrons that this aromatic provides in active sites and binding motifs outweighs the selection pressure for UV transparency. This trade-off explains the lack of conclusive evidence for a UV transparent selection pressure. We suggest that this trade-off applies to the stacked pi-electrons of DNA. It offers a solution to the long-standing paradox of why the macromolecule responsible for the faithful replication of information has high absorbance in the damaging UV radiation region of the spectrum.


Assuntos
Raios Ultravioleta , Aminoácidos/análise , Animais , Desoxirribodipirimidina Fotoliase/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Humanos , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA