Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
IEEE Trans Biomed Eng ; 65(9): 2066-2078, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29989927

RESUMO

OBJECTIVE: Recent reports indicate that making better assumptions about the user's intended movement can improve the accuracy of decoder calibration for intracortical brain-computer interfaces. Several methods now exist for estimating user intent, including an optimal feedback control model, a piecewise-linear feedback control model, ReFIT, and other heuristics. Which of these methods yields the best decoding performance? METHODS: Using data from the BrainGate2 pilot clinical trial, we measured how a steady-state velocity Kalman filter decoder was affected by the choice of intention estimation method. We examined three separate components of the Kalman filter: dimensionality reduction, temporal smoothing, and output gain (speed scaling). RESULTS: The decoder's dimensionality reduction properties were largely unaffected by the intention estimation method. Decoded velocity vectors differed by <5% in terms of angular error and speed vs. target distance curves across methods. In contrast, the smoothing and gain properties of the decoder were greatly affected (> 50% difference in average values). Since the optimal gain and smoothing properties are task-specific (e.g. lower gains are better for smaller targets but worse for larger targets), no one method was better for all tasks. CONCLUSION: Our results show that, when gain and smoothing differences are accounted for, current intention estimation methods yield nearly equivalent decoders and that simple models of user intent, such as a position error vector (target position minus cursor position), perform comparably to more elaborate models. Our results also highlight that simple differences in gain and smoothing properties have a large effect on online performance and can confound decoder comparisons.


Assuntos
Interfaces Cérebro-Computador , Intenção , Córtex Motor/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Calibragem , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Movimento/fisiologia , Quadriplegia/reabilitação
2.
IEEE Trans Neural Syst Rehabil Eng ; 13(3): 280-91, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16200752

RESUMO

This paper presents a heuristic fuzzy logic approach to multiple electromyogram (EMG) pattern recognition for multifunctional prosthesis control. Basic signal statistics (mean and standard deviation) are used for membership function construction, and fuzzy c-means (FCMs) data clustering is used to automate the construction of a simple amplitude-driven inference rule base. The result is a system that is transparent to, and easily "tweaked" by, the prosthetist/clinician. Other algorithms in current literature assume a longer period of unperceivable delay, while the system we present has an update rate of 45.7 ms with little postprocessing time, making it suitable for real-time application. Five subjects were investigated (three with intact limbs, one with a unilateral transradial amputation, and one with a unilateral transradial limb-deficiency from birth). Four subjects were used for system offline analysis, and the remaining intact-limbed subject was used for system real-time analysis. We discriminated between four EMG patterns for subjects with intact limbs, and between three patterns for limb-deficient subjects. Overall classification rates ranged from 94% to 99%. The fuzzy algorithm also demonstrated success in real-time classification, both during steady state motions and motion state transitioning. This functionality allows for seamless control of multiple degrees-of-freedom in a multifunctional prosthesis.


Assuntos
Eletromiografia/métodos , Antebraço/fisiopatologia , Lógica Fuzzy , Prótese Articular , Contração Muscular , Músculo Esquelético/fisiopatologia , Reconhecimento Automatizado de Padrão/métodos , Terapia Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Humanos , Masculino , Movimento , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA