Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Mol Biol ; 105(1-2): 161-175, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32997301

RESUMO

KEY MESSAGE: Genome wide association studies allowed prediction of 17 candidate genes for association with nitrogen use efficiency. Novel information obtained may provide better understanding of genomic controls underlying germplasm variations for this trait in Indian mustard. Nitrogen use efficiency (NUE) of Indian mustard (Brassica juncea (L.) Czern & Coss.) is low and most breeding efforts to combine NUE with crop performance have not succeeded. Underlying genetics also remain unexplored. We tested 92 SNP-genotyped inbred lines for yield component traits, N uptake efficiency (NUPEFF), nitrogen utilization efficiency (NUTEFF), nitrogen harvest index (NHI) and NUE for two years at two nitrogen doses (No without added N and N100 added @100 kg/ha). Genotypes IC-2489-88, M-633, MCP-632, HUJM 1080, GR-325 and DJ-65 recorded high NUE at low N. These also showed improved crop performance under high N. One determinate mustard genotype DJ-113 DT-3 revealed maximum NUTEFF. Genome wide association studies (GWAS) facilitated recognition of 17 quantitative trait loci (QTLs). Environment specificity was high. B-genome chromosomes (B02, B03, B05, B07 and B08) harbored many useful loci. We also used regional association mapping (RAM) to supplement results from GWAS. Annotation of the genomic regions around peak SNPs helped to predict several gene candidates for root architecture, N uptake, assimilation and remobilization. CAT9 (At1g05940) was consistently envisaged for both NUE and NUPEFF. Major N transporter genes, NRT1.8 and NRT3.1 were predicted for explaining variation for NUTEFF and NUPEFF, respectively. Most significant amino acid transporter gene, AAP1 appeared associated with NUE under limited N conditions. All these candidates were predicted in the regions of high linkage disequilibrium. Sequence information of the predicted candidate genes will permit development of molecular markers to aid breeding for high NUE.


Assuntos
Mostardeira/genética , Mostardeira/metabolismo , Nitrogênio/metabolismo , Genes de Plantas , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
2.
Theor Appl Genet ; 134(2): 473-487, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33084931

RESUMO

KEY MESSAGE: Genome wide association studies enabled prediction of many candidate genes for flowering, maturity and plant height under differing day-length conditions. Some genes were envisaged only from derived B. rapa. Flowering and plant height are the key life history traits. These are crucial for adaptation and productivity. Current investigations aimed to examine genotypic differences governing days to flowering, maturity and plant height under contrasting day-length conditions; and identify genomic regions governing the observed phenotypic variations. An association panel comprising 195 inbred lines, representing natural (NR) and derived (DR) forms of Brassica rapa (AA; 2n = 20), was evaluated at two sowing dates and two locations, representing different day-length regimes. Derived B. rapa is a unique pre-breeding material extracted from B. juncea (AABB; 2n = 36). Population structure analysis, using DArT genotypes established derived B. rapa as a genetic resource distinct from natural B. rapa. Genome wide association studies facilitated detection of many trait associated SNPs. Chromosomes A03, A05 and A09 harboured majority of these. Functional annotation of the associated SNPs and surrounding genome space(s) helped to predict 43 candidate genes. Many of these were predicted under specific day-length conditions. Important among these were the genes encoding floral meristem identity (SPL3, SPL15, AP3, BAM2), photoperiodic responses (COL2, AGL18, SPT, NF-YC4), gibberellic acid biosynthesis (GA1) and regulation of flowering (EBS). Some of the predicted genes were detected for DR subpanel alone. Genes controlling hormones, auxins and gibberellins appeared important for the regulation of plant height. Many of the significant SNPs were located on chromosomes harbouring previously reported QTLs and candidate genes. The identified loci may be used for marker-assisted selection after due validation.


Assuntos
Brassica rapa/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Melhoramento Vegetal , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Brassica rapa/anatomia & histologia , Brassica rapa/genética , Mapeamento Cromossômico , Flores/anatomia & histologia , Flores/genética , Genômica , Fenótipo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/genética
3.
Theor Appl Genet ; 134(10): 3209-3224, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34160642

RESUMO

KEY MESSAGE: Heavy doses of gamma irradiation can reduce linkage drag by disrupting large sized alien translocations and promoting exchanges between crop and wild genomes. Resistance to mustard aphid (Lipaphis erysimi) infestation was significantly improved in Brassica juncea through B. juncea-B. fruticulosa introgression. However, linkage drag caused by introgressed chromatin fragments has so far prevented the deployment of this resistance source in commercial cultivars. We investigated the patterns of donor chromatin segment substitutions in the introgression lines (ILs) through genomic in situ hybridization (GISH) coupled with B. juncea chromosome-specific oligonucleotide probes. These allowed identification of large chromosome translocations from B. fruticulosa in the terminal regions of chromosomes A05, B02, B03 and B04 in three founder ILs (AD-64, 101 and 104). Only AD-101 carried an additional translocation at the sub-terminal to intercalary position in both homologues of chromosome A01. We validated these translocations with a reciprocal blast hit analysis using shotgun sequencing of three ILs and species-specific contigs/scaffolds (kb sized) from a de novo assembly of B. fruticulosa. Alien segment substitution on chromosome A05 could not be validated. Current studies also endeavoured to break linkage drag by exposing seeds to a heavy dose (200kR) of gamma radiation. Reduction in the size of introgressed chromatin fragments was observed in many M3 plants. There was a complete loss of the alien chromosome fragment in one instance. A few M3 plants with novel patterns of chromosome segment substitutions displayed improved agronomic performance coupled with resistance to mustard aphid. SNPs in such genomic spaces should aid the development of markers to track introgressed DNA and allow application in plant breeding.


Assuntos
Afídeos/fisiologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Mostardeira/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Animais , Resistência à Doença/genética , Resistência à Doença/efeitos da radiação , Raios gama , Regulação da Expressão Gênica de Plantas , Mostardeira/crescimento & desenvolvimento , Mostardeira/parasitologia , Mostardeira/efeitos da radiação , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética
4.
Mol Biol Rep ; 47(4): 2963-2974, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32219770

RESUMO

We investigated phenotypic variations for pod shattering, pod length and number of seeds per pod in large germplasm collections of Brassica juncea (2n = 36; AABB) and its progenitor species, B. rapa (2n = 20; AA) and B. nigra (2n = 16; BB). Pod shatter resistance was measured as energy required for rupturing a mature dry pod, with a specially fabricated pendulum machine. Rupture energy (RE) ranged from 3.3 to 11.0 mJ in B. juncea. MCP 633, NR 3350 and Albeli required maximum energy to shatter a pod. It ranged from 2.5 to 7.8 mJ for B. rapa with an average of 5.5 mJ. B. nigra possessed easy to rupture pods. Correlation analysis showed strong associations among these traits in B. juncea and B. rapa. Genome wide association studies were conducted with select sets of B. juncea and B. rapa germplasm lines. Significant and annotated associations predict the role of FRUITFULL, MANNASE7, and NAC secondary wall thickening promoting factor (NST2) in the genetic regulation of shatter resistance in B. juncea. NST2 and SHP1 appeared important for pod length and seeds per pod in B. rapa. Candidate gene based association mapping also confirmed the role of SHP1 and NST2 in regulating pod shattering and related pod traits in B. rapa and B. juncea. Footprints of selection were detected in SHP1, SHP2 (B. rapa, B. nigra and B. juncea), RPL (B. rapa) and NAC (B. juncea). Our results provide insights into the genetic architecture of three pod traits. The identified genes are relevant to improving and securing crop productivity of mustard crop.


Assuntos
Mostardeira/genética , Sementes/genética , Mapeamento Cromossômico/métodos , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo
5.
Mol Biol Rep ; 46(4): 4235-4244, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115836

RESUMO

Nitrogen (N) is a critical input for plant growth and development. A better understanding of N uptake and utilization is important to develop plant breeding strategies for improving nitrogen use efficiency (NUE). With that objective in mind, we assayed a SNP-genotyped association panel comprising 92 inbred lines for the activities of nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS) and glutamate synthase (GOGAT). All these enzymes are associated with N assimilation. The experiments were carried out at two levels of N application: no added N (N0) and agrnomically recommened dose (100 kg/ha) of N application (N100). Genome wide association studies (GWAS) helped to identify several marker-trait associations (MTAs), involving chromosomes A01, A06, A08, B02, B04, B05 and B08. These explained high phenotypic variation (up to 32%). Annotation of the genomic region(s) in or around significant SNPs allowed prediction of genes encoding high affinity nitrate transporters, glutamine synthetase 1.3, myb-like transcription factor family protein, bidirectional amino acid transporter 1, auxin signaling F-box 3 and oxidoreductases. This is the first attempt to use GWAS for identification of enzyme QTLs to explain variation for nitrogen assimilation enzymes in Brassica juncea.


Assuntos
Mostardeira/enzimologia , Mostardeira/genética , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/genética , Transporte Biológico/genética , Estudo de Associação Genômica Ampla/métodos , Glutamato Sintase/genética , Glutamato Sintase/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Transportadores de Nitrato , Nitrito Redutases/genética , Nitrito Redutases/metabolismo
6.
Mol Biol Rep ; 46(1): 1227-1238, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30637624

RESUMO

Seed size and seed metabolites have been the targets of direct or indirect selection during domestication and subsequent crop breeding. Understanding these traits and associated genetics can prove very useful for plant translational research. Large germplasm assemblage (235) of Brassica juncea and its progenitor species (B. rapa and B. nigra) was evaluated to establish seed trait variations for seed size and seed metabolites. Seeds were smallest in B. nigra and largest in B. juncea. Australian B. juncea and Indian B. rapa var brown sarson types averaged more seed oil content. Seed size and oil content were generally higher in modern cultivars in comparison to the land races. Allelic diversity for known associated genes for seed-size and oil-content (AP2, ARF2, TTG2, GRF2, GL2, CYP78A5, CYP78A6, MINI3, IKU2, IKU1, BRI1, DGAT, GPDH, LPAAT, GPAT and DA1) was studied so as to infer the effect of domestication on seed traits. Three genes (IKU1, IKU2, AP2) in B. rapa, two (TTG2 and GL2) in B. nigra and two (IKU1 and GRF2) in natural B. juncea were identified as targets of selection on the basis of Fst outlier and/or sequence diversity tests. We report parallel divergence for seed traits between B. juncea and B. rapa. Directional selection appeared stronger for seed-size as compared to correlated seed metabolites. Positive selection on seed-size is likely to have played a significant role in structuring regional variation in the germplasm.


Assuntos
Mostardeira/genética , Sementes/genética , Alelos , Evolução Biológica , Brassica rapa/genética , Mapeamento Cromossômico/métodos , Diploide , Evolução Molecular , Ácidos Graxos/genética , Frequência do Gene/genética , Variação Genética/genética , Genoma de Planta/genética , Genótipo , Fenótipo , Seleção Genética/genética
7.
Am J Bot ; 101(7): 1157-1166, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25030348

RESUMO

• Premise of the study: Brassica juncea is a major source of edible oil in the Indian subcontinent and northern China. It is also used as a root and leaf vegetable in China and as a condiment in Europe and America. There is a long-standing view that B. juncea originated from multiple hybridization events between B. rapa and B. nigra and that hybridizations were always unidirectional with B. rapa as the cytoplasmic donor. These conclusions were, however, centered primarily on nuclear markers.• Methods: Two hundred forty-six accessions of B. juncea, B. rapa, and B. nigra were genotyped using chloroplast and nuclear simple sequence repeat (SSR) markers.• Key results: A structure analysis assigned B. juncea germplasm (122) into three major groups based on plasmotype variation. The bulk of Indian B. juncea genotypes were grouped along with Chinese and Australian accessions. This plasmotype was absent in sampled accessions of B. rapa (97), B. nigra (27), and other wild crucifers (10). The second group of B. juncea included East European genotypes and four accessions from India. It showed unambiguous homology with the predominant B. nigra plasmotype. The neighbor joining tree produced seven subgroups, arranged into two broad lineages. The first lineage included Indian, Australian, and Chinese B. juncea genotypes; it was associated with wild species belonging to the "rapa" lineage. Nuclear SSR marker-based analyses were largely supportive of results from chloroplast SSR analyses.• Conclusions: Based on these results, we provide the first report that B. juncea originated several times with both B. rapa and B. nigra as cytoplasmic donors in separate hybridization events.

8.
Plant Physiol Biochem ; 203: 108084, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37832370

RESUMO

Brassica rapa L. (2n = 20; AA) is a vegetable and oilseed crop that is grown all over the world. Its leaves, shoots, and seeds store significant amounts of minerals. We used inductively coupled plasma-optical emission spectroscopy (ICP-OES) to determine the concentrations of eleven minerals in the leaves and seeds of 195 advanced generation inbred lines, of which 92 represented natural (NR) B. rapa and the remaining 103 were derived (DR) from a set of mother genotypes originally extracted from an allotetraploid B. juncea (2n = 36; AABB). The inbred lines differed for the composition of leaf and seed minerals. Leaf concentrations of N, K, Zn, and Se were higher in the DR subpanel as compared to NR subpanel, along with high seed accumulations of K and Se. DArT genotyping and genome wide association mapping led to the identification of SNPs associated with leaf and seed mineral compositions. Chromosomes A03, A05, and A10 harboured the most associated loci. Annotations of the regions adjacent to respective GWAS peaks allowed prediction of genes known for acquisition, transport, and accumulation of minerals and heavy metal detoxification. Transcriptome analysis revealed differential expression patterns of the predicted candidates, with most genes either down-regulated in derived genotypes relative to natural forms or their expression being comparable between the two. General downregulation may be a consequence of extracting B. rapa from allotetraploid B. juncea through genome resection. Some of the identified SNPs may be used as DNA markers for breeding programmes designed to modify the leaf and seed mineral compositions.


Assuntos
Brassica rapa , Brassica rapa/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Folhas de Planta/genética , Sementes/genética , Minerais
9.
Front Plant Sci ; 13: 882766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909769

RESUMO

The defatted Brassica napus (rapeseed) meal can be high-protein feed for livestock as the protein value of rapeseed meal is higher than that of the majority of other vegetable proteins. Extensive work has already been carried out on developing canola rapeseed where the focus was on reducing erucic acid and glucosinolate content, with less consideration to other antinutritional factors such as tannin, phytate, sinapine, crude fiber, etc. The presence of these antinutrients limits the use and marketing of rapeseed meals and a significant amount of it goes unused and ends up as waste. We investigated the genetic architecture of crude protein, methionine, tryptophan, total phenols, ß-carotene, glucosinolates (GLSs), phytate, tannins, sinapine, and crude fiber content of defatted seed meal samples by conducting a genome-wide association study (GWAS), using a diversity panel comprising 96 B. napus genotypes. Genotyping by sequencing was used to identify 77,889 SNPs, spread over 19 chromosomes. Genetic diversity and phenotypic variations were generally high for the studied traits. A total of eleven genotypes were identified which showed high-quality protein, high antioxidants, and lower amount of antinutrients. A significant negative correlation between protein and limiting amino acids and a significant positive correlation between GLS and phytic acid were observed. General and mixed linear models were used to estimate the association between the SNP markers and the seed quality traits and quantile-quantile (QQ) plots were generated to allow the best-fit algorithm. Annotation of genomic regions around associated SNPs helped to predict various trait-related candidates such as ASP2 and EMB1027 (amino acid biosynthesis); HEMA2, GLU1, and PGM (tryptophan biosynthesis); MS3, CYSD1, and MTO1 (methionine biosynthesis); LYC (ß-carotene biosynthesis); HDR and ISPF (MEP pathway); COS1 (riboflavin synthesis); UGT (phenolics biosynthesis); NAC073 (cellulose and hemicellulose biosynthesis); CYT1 (cellulose biosynthesis); BGLU45 and BGLU46 (lignin biosynthesis); SOT12 and UGT88A1 (flavonoid pathway); and CYP79A2, DIN2, and GSTT2 (GLS metabolism), etc. The functional validation of these candidate genes could confirm key seed meal quality genes for germplasm enhancement programs directed at improving protein quality and reducing the antinutritional components in B. napus.

10.
Front Plant Sci ; 13: 1056028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605963

RESUMO

Acid phosphatases (Apases) are an important group of enzymes that hydrolyze soil and plant phosphoesters and anhydrides to release Pi (inorganic phosphate) for plant acquisition. Their activity is strongly correlated to the phosphorus use efficiency (PUE) of plants. Indian mustard (Brassica juncea L. Czern & Coss) is a major oilseed crop that also provides protein for the animal feed industry. It exhibits low PUE. Understanding the genetics of PUE and its component traits, especially Apase activity, will help to reduce Pi fertilizer application in the crop. In the present study, we evaluated 280 genotypes of the diversity fixed foundation set of Indian mustard for Apase activity in the root (RApase) and leaf (LApase) tissues at three- low (5µM), normal (250µM) and high (1mM) Pi levels in a hydroponic system. Substantial effects of genotype and Pi level were observed for Apase activity in both tissues of the evaluated lines. Low Pi stress induced higher mean RApase and LApase activities. However, mean LApase activity was relatively more than mean RApase at all three Pi levels. JM06016, IM70 and Kranti were identified as promising genotypes with higher LApase activity and increased R/S at low Pi. Genome-wide association study revealed 10 and 4 genomic regions associated with RApase and LApase, respectively. Annotation of genomic regions in the vicinity of peak associated SNPs allowed prediction of 15 candidates, including genes encoding different family members of the acid phosphatase such as PAP10 (purple acid phosphatase 10), PAP16, PNP (polynucleotide phosphorylase) and AT5G51260 (HAD superfamily gene, subfamily IIIB acid phosphatase) genes. Our studies provide an understanding of molecular mechanism of the Apase response of B. juncea at varying Pi levels. The identified SNPs and candidate genes will support marker-assisted breeding program for improving PUE in Indian mustard. This will redeem the crop with enhanced productivity under restricted Pi reserves and degrading agro-environments.

11.
Biotechnol Rep (Amst) ; 31: e00653, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34258242

RESUMO

Hyaloperonospora brassicae causes downy mildew, a major disease of Brassicaceae species. We sequenced the genomes of two H. brassicae isolates of high (Sample B) and low (Sample C) virulence. Sequencing reads were first assembled de novo with software's SOAPdenovo2, ABySS V2.1 and Velvet V1.1 and later combined to create meta-assemblies with genome sizes of 72.762 and 76.950Mb and predicted gene densities of 1628 and 1644 /Mb, respectively. We could annotate 12.255 and 13,030 genes with high proportions (91-92%) of complete BUSCOs for Sample B and C, respectively. Comparative analysis revealed conserved and varied molecular machinery underlying the physiological specialisation and infection capabilities. BLAST analysis against PHI gene database suggested a relatively higher loss of genes for virulence and pathogenicity in Sample C compared to Sample B, reflecting pathogen evolution through differential rates of mutation and selection. These studies will enable identification and monitoring of H. brassicae virulence factors prevailing in-field.

12.
Sci Rep ; 11(1): 4278, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608616

RESUMO

Timely transition to flowering, maturity and plant height are important for agronomic adaptation and productivity of Indian mustard (B. juncea), which is a major edible oilseed crop of low input ecologies in Indian subcontinent. Breeding manipulation for these traits is difficult because of the involvement of multiple interacting genetic and environmental factors. Here, we report a genetic analysis of these traits using a population comprising 92 diverse genotypes of mustard. These genotypes were evaluated under deficient (N75), normal (N100) or excess (N125) conditions of nitrogen (N) application. Lower N availability induced early flowering and maturity in most genotypes, while high N conditions delayed both. A genotyping-by-sequencing approach helped to identify 406,888 SNP markers and undertake genome wide association studies (GWAS). 282 significant marker-trait associations (MTA's) were identified. We detected strong interactions between GWAS loci and nitrogen levels. Though some trait associated SNPs were detected repeatedly across fertility gradients, majority were identified under deficient or normal levels of N applications. Annotation of the genomic region (s) within ± 50 kb of the peak SNPs facilitated prediction of 30 candidate genes belonging to light perception, circadian, floral meristem identity, flowering regulation, gibberellic acid pathways and plant development. These included over one copy each of AGL24, AP1, FVE, FRI, GID1A and GNC. FLC and CO were predicted on chromosomes A02 and B08 respectively. CDF1, CO, FLC, AGL24, GNC and FAF2 appeared to influence the variation for plant height. Our findings may help in improving phenotypic plasticity of mustard across fertility gradients through marker-assisted breeding strategies.


Assuntos
Flores/genética , Estudo de Associação Genômica Ampla , Mostardeira/fisiologia , Nitrogênio/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Ligação Genética , Genoma de Planta , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
13.
Front Genet ; 11: 744, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088279

RESUMO

Indian mustard (Brassica juncea) is a major source of vegetable oil in the Indian subcontinent. The seed cake left after the oil extraction is used as livestock feed. We examined the genetic architecture of oil, protein, and glucosinolates by conducting a genome-wide association study (GWAS), using an association panel comprising 92 diverse genotypes. We conducted trait phenotyping over 2 years at two levels of nitrogen (N) application. Genotyping by sequencing was used to identify 66,835 loci, covering 18 chromosomes. Genetic diversity and phenotypic variations were high for the studied traits. Trait performances were stable when averaged over years and N levels. However, individual performances differed. General and mixed linear models were used to estimate the association between the SNP markers and the seed quality traits. Population structure, principal components (PCs) analysis, and discriminant analysis of principal components (DAPCs) were included as covariates to overcome the bias due to the population stratification. We identified 16, 23, and 27 loci associated with oil, protein, and glucosinolates, respectively. We also established LD patterns and haplotype structures for the candidate genes. The average block sizes were larger on A-genome chromosomes as compared to the B- genome chromosomes. Genetic associations differed over N levels. However, meta-analysis of GWAS datasets not only improved the power to recognize associations but also helped to identify common SNPs for oil and protein contents. Annotation of the genomic region around the identified SNPs led to the prediction of 21 orthologs of the functional candidate genes related to the biosynthesis of oil, protein, and glucosinolates. Notable among these are: LACS5 (A09), FAD6 (B05), ASN1 (A06), GTR2 (A06), CYP81G1 (B06), and MYB44 (B06). The identified loci will be very useful for marker-aided breeding for seed quality modifications in B. juncea.

14.
Sci Rep ; 9(1): 17089, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745129

RESUMO

Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a major disease of crop brassicas, with inadequate variation for resistance in primary gene pools. We utilized a wild Brassicaceae species with excellent resistance against stem rot to develop a set of B. juncea - B. fruticulosa introgression lines (ILs). These were assessed for resistance using a highly reproducible stem inoculation technique against a virulent pathogen isolate. Over 40% of ILs showed higher levels of resistance. IL-43, IL-175, IL-215, IL-223 and IL-277 were most resistant ILs over three crop seasons. Sequence reads (21x) from the three most diverse ILs were then used to create B. juncea pseudomolecules, by replacing SNPs of reference B. juncea with those of re-sequenced ILs. Genotyping by sequencing (GBS) was also carried out for 88 ILs. Resultant sequence tags were then mapped on to the B. juncea pseudomolecules, and SNP genotypes prepared for each IL. Genome wide association studies helped to map resistance responses to stem rot. A total of 13 significant loci were identified on seven B. juncea chromosomes (A01, A03, A04, A05, A08, A09 and B05). Annotation of the genomic region around identified SNPs allowed identification of 20 candidate genes belonging to major disease resistance protein families, including TIR-NBS-LRR class, Chitinase, Malectin/receptor-like protein kinase, defensin-like (DEFL), desulfoglucosinolate sulfotransferase protein and lipoxygenase. A majority of the significant SNPs could be validated using whole genome sequences (21x) from five advanced generation lines being bred for Sclerotinia resistance as compared to three susceptible B. juncea germplasm lines. Our findings not only provide critical new understanding of the defensive pathway of B. fruticulosa resistance, but will also enable development of marker candidates for assisted transfer of introgressed resistant loci in to agronomically superior cultivars of crop Brassica.


Assuntos
Ascomicetos/patogenicidade , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas/genética , Mostardeira/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Testes Genéticos , Genoma de Planta , Infecções/genética , Infecções/microbiologia , Mostardeira/imunologia , Mostardeira/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
15.
Front Plant Sci ; 10: 1015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447876

RESUMO

A set of 96 Brassica juncea-Erucastrum cardaminoides introgression lines (ILs) were developed with genomic regions associated with Sclerotinia stem rot (Sclerotinia sclerotiorum) resistance from a wild Brassicaceous species E. cardaminoides. ILs were assessed for their resistance responses to stem inoculation with S. sclerotiorum, over three crop seasons (season I, 2011/2012; II, 2014/2015; III, 2016-2017). Initially, ILs were genotyped with transferable SSR markers and subsequently through genotyping by sequencing. SSR based association mapping identified six marker loci associated to resistance in both A and B genomes. Subsequent genome-wide association analysis (GWAS) of 84 ILs recognized a large number of SNPs associated to resistance, in chromosomes A03, A06, and B03. Chromosomes A03 and A06 harbored the maximum number of resistance related SNPs. Annotation of linked genomic regions highlighted an array of resistance mechanisms in terms of signal transduction pathways, hypersensitive responses and production of anti-fungal proteins and metabolites. Of major importance was the clustering of SNPs, encoding multiple resistance genes on small regions spanning approximately 885 kb region on chromosome A03 and 74 kb on B03. Five SNPs on chromosome A03 (6,390,210-381) were associated with LRR-RLK (receptor like kinases) genes that encode LRR-protein kinase family proteins. Genetic factors associated with pathogen-associated molecular patterns (PAMPs) and effector-triggered immunity (ETI) were predicted on chromosome A03, exhibiting 11 SNPs (6,274,763-994). These belonged to three R-Genes encoding TIR-NBS-LRR proteins. Marker trait associations (MTAs) identified will facilitate marker assisted introgression of these critical resistances, into new cultivars of B. juncea initially and, subsequently, into other crop Brassica species.

16.
Sci Rep ; 7(1): 5904, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724956

RESUMO

Sclerotinia stem rot (Sclerotinia sclerotiorum) is a major disease of Brassica oilseeds. As suitable donors to develop resistant cultivars are not available in crop Brassicas, we introgressed resistance from a wild Brassicaceae species, B. fruticulosa. We produced 206 B. juncea-B. fruticulosa introgression lines (ILs). These were assessed for pollen grain fertility, genome size variations and resistance responses to Sclerotinia following stem inoculations under disease-conducive conditions. Of these, 115 ILs showing normal fertility and genome size were selected for cytogenetic characterization using florescent genomic in situ hybridization (Fl-GISH). B. fruticulosa segment substitutions were indicated in 28 ILs. These were predominantly terminal and located on B-genome chromosomes. A final set of 93 highly fertile and euploid (2n = 36) ILs were repeat-evaluated for their resistance responses during 2014-15. They were also genotyped with 202 transferable and 60 candidate gene SSRs. Association mapping allowed detection of ten significant marker trait associations (MTAs) after Bonferroni correction. These were: CNU-m157-2, RA2G05, CNU-m353-3, CNU-m442-5, ACMP00454-2, ACMP00454-3, EIN2-3-1, M641-1, Na10D09-1 and Na10D11-1. This is the first time such a molecular mapping technique has been deployed with introgression lines carrying genomic segments from B. fruticulosa, and the first to show that they possess high levels of resistance against S. sclerotiorum.


Assuntos
Ascomicetos/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genoma de Planta , Mostardeira/genética , Mostardeira/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fertilidade , Marcadores Genéticos , Variação Genética , Genética Populacional , Tamanho do Genoma , Hibridização Genética , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genética , Pólen/genética , Pólen/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA