Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 19(12): e3001496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928937

RESUMO

Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel's pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs' control of cellular Mg2+ homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Ciclinas/fisiologia , Células HEK293 , Humanos , Magnésio/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia
2.
J Biol Chem ; 293(29): 11491-11504, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29866880

RESUMO

The channel-kinase transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein with ion channel and kinase domains. The kinase activity of TRPM7 has been linked to the regulation of a broad range of cellular activities, but little is understood as to how the channel itself is regulated by its own kinase activity. Here, using several mammalian cell lines expressing WT TRPM7 or kinase-inactive variants, we discovered that compared with the cells expressing WT TRPM7, cells in which TRPM7's kinase activity was inactivated had faster degradation, elevated ubiquitination, and increased intracellular retention of the channel. Mutational analysis of TRPM7 autophosphorylation sites further revealed a role for Ser-1360 of TRPM7 as a key residue mediating both TRPM7 stability and intracellular trafficking. Additional trafficking roles were uncovered for Ser-1403 and Ser-1567, whose phosphorylation by TRPM7's kinase activity mediated the interaction of the channel with the signaling protein 14-3-3θ. In summary, our results point to a critical role for TRPM7's kinase activity in regulating proteasome-mediated turnover of the TRPM7 channel and controlling its cellular localization in polarized epithelial cells. Overall, these findings improve our understanding of the significance of TRPM7's kinase activity for functional regulation of its channel activity.


Assuntos
Células Epiteliais/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Polaridade Celular , Células Epiteliais/citologia , Células HEK293 , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteínas Quinases/análise , Proteínas Quinases/metabolismo , Estabilidade Proteica , Transporte Proteico , Canais de Cátion TRPM/análise
3.
Sci Rep ; 7(1): 15623, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142255

RESUMO

In humans, germline mutations in Trpm6 cause autosomal dominant hypomagnesemia with secondary hypocalcemia disorder. Loss of Trpm6 in mice also perturbs cellular magnesium homeostasis but additionally results in early embryonic lethality and neural tube closure defects. To define the mechanisms by which TRPM6 influences neural tube closure, we functionally characterized the role of TRPM6 during early embryogenesis in Xenopus laevis. The expression of Xenopus TRPM6 (XTRPM6) is elevated at the onset of gastrulation and is concentrated in the lateral mesoderm and ectoderm at the neurula stage. Loss of XTRPM6 produced gastrulation and neural tube closure defects. Unlike XTRPM6's close homologue XTRPM7, whose loss interferes with mediolateral intercalation, depletion of XTRPM6 but not XTRPM7 disrupted radial intercalation cell movements. A zinc-influx assay demonstrated that TRPM6 has the potential to constitute functional channels in the absence of TRPM7. The results of our study indicate that XTRPM6 regulates radial intercalation with little or no contribution from XTRPM7 in the region lateral to the neural plate, whereas XTRPM7 is mainly involved in regulating mediolateral intercalation in the medial region of the neural plate. We conclude that both TRPM6 and TRPM7 channels function cooperatively but have distinct and essential roles during neural tube closure.


Assuntos
Desenvolvimento Embrionário/genética , Placa Neural/crescimento & desenvolvimento , Tubo Neural/crescimento & desenvolvimento , Canais de Cátion TRPM/genética , Proteínas de Xenopus/genética , Animais , Cálcio/metabolismo , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação em Linhagem Germinativa/genética , Humanos , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipercalciúria/patologia , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipocalcemia/patologia , Magnésio/metabolismo , Nefrocalcinose/genética , Nefrocalcinose/metabolismo , Nefrocalcinose/patologia , Placa Neural/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/metabolismo , Erros Inatos do Transporte Tubular Renal/patologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA