Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 78(2): 361-374, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30535914

RESUMO

Although marine biofouling has been widely studied on different substrates, information on biofouling on plastics in the Arabian Gulf is limited. Substrate- and location-specific effects were investigated by comparing the microbial communities developed on polyethylene terephthalate (PET) and polyethylene (PE) with those on steel and wood, at two locations in the Sea of Oman. Total biomass was lower on PET and PE than on steel and wood. PET had the highest bacterial abundance at both locations, whereas chlorophyll a concentrations did not vary between substrates. MiSeq 16S ribosomal RNA sequencing revealed comparable operational taxonomic unit (OTU) richness on all substrates at one location but lower numbers on PET and PE at the other location. Non-metric multidimensional scaling (NMDS) showed distinct clusters of the bacterial communities based on substrate (analysis of similarity (ANOSIM), R = 0.45-0.97, p < 0.03) and location (ANOSIM, R = 0.56, p < 0.0001). The bacterial genera Microcystis and Hydrogenophaga and the diatoms Licmophora and Mastogloia were specifically detected on plastics. Desulfovibrio and Pseudomonas spp. exhibited their highest abundance on steel and Corynebacterium spp. on wood. Scanning electron microscopy (SEM) revealed fissure formation on PET and PE, indicating physical degradation. The presence of free radicals on PET and carbonyl bonds (C=O) on PE, as revealed by Fourier transform infrared (FTIR) spectroscopy, indicated abiotic degradation while hydroxyl groups and spectral peaks for proteins and polysaccharides on PE indicated biotic degradation. We conclude that fouling microbial communities are not only substrate-specific but also location-specific and microbes developing on plastics could potentially contribute to their degradation in the marine environment.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Plásticos/química , Aço/química , Madeira/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Incrustação Biológica , Polietilenotereftalatos/química , Especificidade da Espécie
2.
Mar Pollut Bull ; 150: 110639, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31706724

RESUMO

Little is known about the degradability of oxo-biodegradable polyethylene (OXO-PE) and its surface fouling bacterial communities in the marine environment. The degradation of OXO-PE, PE and polyethylene terephthalate (PET) was compared at two depths (2 m and 6 m) in the Arabian Gulf. Scanning electron microcopy (SEM) revealed more fissure formation on OXO-PE and PE than on PET, indicating physical degradation. The formation of hydroxyl groups and carbonyl bonds, by Fourier-transform infrared spectroscopy (FTIR), suggests chemical degradation of OXO-PE. Plastisphere bacterial communities on OXO-PE and PE were different than on PET. Proteobacteria, Bacteriodetes and Planctomycetes were detected on all plastics, however, sequences of Alteromonas and Zoogloea were OXO-PE-specific suggesting a possible involvement of these bacterial genera in OXO-PE degradation. We conclude that OXO-PE shows increased signs of degradation with time owing to the combination of abiotic and biotic processes, and its degradation is higher in the benthic than in the planktonic zone.


Assuntos
Biodegradação Ambiental , Incrustação Biológica , Plâncton/fisiologia , Polietileno , Poluentes da Água/metabolismo , Plásticos , Polietilenotereftalatos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA