Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161698

RESUMO

The coronavirus pandemic, also known as the COVID-19 pandemic, is an ongoing virus. It was first identified on December 2019 in Wuhan, China, and later spread to 192 countries. As of now, 251,266,207 people have been affected, and 5,070,244 deaths are reported. Due to the growing number of COVID-19 patients, the demand for COVID wards is increasing. Telemedicine applications are increasing drastically because of convenient treatment options. The healthcare sector is rapidly adopting telemedicine applications for the treatment of COVID-19 patients. Most telemedicine applications are developed for heterogeneous environments and due to their diverse nature, data transmission between similar and dissimilar telemedicine applications is a difficult task. In this paper, we propose a Tele-COVID system architecture design along with its security aspects to provide the treatment for COVID-19 patients from distance. Tele-COVID secure system architecture is designed to resolve the problem of data interchange between two different telemedicine applications, interoperability, and vendor lock-in. Tele-COVID is a web-based and Android telemedicine application that provides suitable treatment to COVID-19 patients. With the help of Tele-COVID, the treatment of patients at a distance is possible without the need for them to visit hospitals; in case of emergency, necessary services can also be provided. The application is tested on COVID-19 patients in the county hospital and shows the initial results.


Assuntos
COVID-19 , Telemedicina , Hospitais , Humanos , Pandemias , SARS-CoV-2
2.
Sci Rep ; 14(1): 7406, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548726

RESUMO

Software vulnerabilities pose a significant threat to system security, necessitating effective automatic detection methods. Current techniques face challenges such as dependency issues, language bias, and coarse detection granularity. This study presents a novel deep learning-based vulnerability detection system for Java code. Leveraging hybrid feature extraction through graph and sequence-based techniques enhances semantic and syntactic understanding. The system utilizes control flow graphs (CFG), abstract syntax trees (AST), program dependencies (PD), and greedy longest-match first vectorization for graph representation. A hybrid neural network (GCN-RFEMLP) and the pre-trained CodeBERT model extract features, feeding them into a quantum convolutional neural network with self-attentive pooling. The system addresses issues like long-term information dependency and coarse detection granularity, employing intermediate code representation and inter-procedural slice code. To mitigate language bias, a benchmark software assurance reference dataset is employed. Evaluations demonstrate the system's superiority, achieving 99.2% accuracy in detecting vulnerabilities, outperforming benchmark methods. The proposed approach comprehensively addresses vulnerabilities, including improper input validation, missing authorizations, buffer overflow, cross-site scripting, and SQL injection attacks listed by common weakness enumeration (CWE).

3.
Sci Rep ; 14(1): 1345, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228639

RESUMO

A brain tumor is an unnatural expansion of brain cells that can't be stopped, making it one of the deadliest diseases of the nervous system. The brain tumor segmentation for its earlier diagnosis is a difficult task in the field of medical image analysis. Earlier, segmenting brain tumors was done manually by radiologists but that requires a lot of time and effort. Inspite of this, in the manual segmentation there was possibility of making mistakes due to human intervention. It has been proved that deep learning models can outperform human experts for the diagnosis of brain tumor in MRI images. These algorithms employ a huge number of MRI scans to learn the difficult patterns of brain tumors to segment them automatically and accurately. Here, an encoder-decoder based architecture with deep convolutional neural network is proposed for semantic segmentation of brain tumor in MRI images. The proposed method focuses on the image downsampling in the encoder part. For this, an intelligent LinkNet-34 model with EfficientNetB7 encoder based semantic segmentation model is proposed. The performance of LinkNet-34 model is compared with other three models namely FPN, U-Net, and PSPNet. Further, the performance of EfficientNetB7 used as encoder in LinkNet-34 model has been compared with three encoders namely ResNet34, MobileNet_V2, and ResNet50. After that, the proposed model is optimized using three different optimizers such as RMSProp, Adamax and Adam. The LinkNet-34 model has outperformed with EfficientNetB7 encoder using Adamax optimizer with the value of jaccard index as 0.89 and dice coefficient as 0.915.


Assuntos
Neoplasias Encefálicas , Semântica , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Algoritmos , Inteligência , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
4.
PLoS One ; 19(1): e0292100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236900

RESUMO

Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model's first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system's result is to enhance the classifier's performance in spotting illness early.


Assuntos
Algoritmos , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Aprendizado de Máquina , Curva ROC , Previsões
5.
Sci Rep ; 14(1): 18075, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103381

RESUMO

The intrusion detection process is important in various applications to identify unauthorized Internet of Things (IoT) network access. IoT devices are accessed by intermediators while transmitting the information, which causes security issues. Several intrusion detection systems are developed to identify intruders and unauthorized access in different software applications. Existing systems consume high computation time, making it difficult to identify intruders accurately. This research issue is mitigated by applying the Interrupt-aware Anonymous User-System Detection Method (IAU-S-DM). The method uses concealed service sessions to identify the anonymous interrupts. During this process, the system is trained with the help of different parameters such as origin, session access demands, and legitimate and illegitimate users of various sessions. These parameters help to recognize the intruder's activities with minimum computation time. In addition, the collected data is processed using the deep recurrent learning approach that identifies service failures and breaches, improving the overall intruder detection rate. The created system uses the TON-IoT dataset information that helps to identify the intruder activities while accessing the different data resources. This method's consistency is verified using the metrics of service failures of 10.65%, detection precision of 14.63%, detection time of 15.54%, and classification ratio of 20.51%.

6.
Sci Rep ; 14(1): 22422, 2024 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341859

RESUMO

Breast cancer, a prevalent and life-threatening disease, necessitates early detection for the effective intervention and the improved patient health outcomes. This paper focuses on the critical problem of identifying breast cancer using a model called Attention U-Net. The model is utilized on the Breast Ultrasound Image Dataset (BUSI), comprising 780 breast images. The images are categorized into three distinct groups: 437 cases classified as benign, 210 cases classified as malignant, and 133 cases classified as normal. The proposed model leverages the attention-driven U-Net's encoder blocks to capture hierarchical features effectively. The model comprises four decoder blocks which is a pivotal component in the U-Net architecture, responsible for expanding the encoded feature representation obtained from the encoder block and for reconstructing spatial information. Four attention gates are incorporated strategically to enhance feature localization during decoding, showcasing a sophisticated design that facilitates accurate segmentation of breast tumors in ultrasound images. It displays its efficacy in accurately delineating and segregating tumor borders. The experimental findings demonstrate outstanding performance, achieving an overall accuracy of 0.98, precision of 0.97, recall of 0.90, and a dice score of 0.92. It demonstrates its effectiveness in precisely defining and separating tumor boundaries. This research aims to make automated breast cancer segmentation algorithms by emphasizing the importance of early detection in boosting diagnostic capabilities and enabling prompt and targeted medical interventions.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Ultrassonografia Mamária/métodos , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos
7.
Comput Intell Neurosci ; 2022: 1906466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-39376533

RESUMO

Coronary heart disease has an intense impact on human life. Medical history-based diagnosis of heart disease has been practiced but deemed unreliable. Machine learning algorithms are more reliable and efficient in classifying, e.g., with or without cardiac disease. Heart disease detection must be precise and accurate to prevent human loss. However, previous research studies have several shortcomings, for example,take enough time to compute while other techniques are quick but not accurate. This research study is conducted to address the existing problem and to construct an accurate machine learning model for predicting heart disease. Our model is evaluated based on five feature selection algorithms and performance assessment matrix such as accuracy, precision, recall, F1-score, MCC, and time complexity parameters. The proposed work has been tested on all of the dataset'sfeatures as well as a subset of them. The reduction of features has an impact on theperformance of classifiers in terms of the evaluation matrix and execution time. Experimental results of the support vector machine, K-nearest neighbor, and logistic regression are 97.5%,95 %, and 93% (accuracy) with reduced computation timesof 4.4, 7.3, and 8seconds respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA