Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 122: 103769, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35988854

RESUMO

The 22q11.2 hemizygous deletion confers high risk for multiple neurodevelopmental disorders. Inhibitory signaling, largely regulated through GABAA receptors, is suggested to serve a multitude of brain functions that are disrupted in the 22q11.2 deletion syndrome. We investigated the putative deficit of GABAA receptors and the potential substrates contributing to the inhibitory and excitatory dysregulations in hippocampal networks of the Df(h22q11)/+ mouse model of the 22q11.2 hemizygous deletion. The Df(h22q11)/+ mice exhibited impairments in several hippocampus-related functional domains, represented by impaired spatial memory and sensory gating functions. Autoradiography using the [3H]muscimol tracer revealed a significant reduction in GABAA receptor binding in the CA1 and CA3 subregions, together with a loss of GAD67+ interneurons in CA1 of Df(h22q11)/+ mice. Furthermore, electrophysiology recordings exhibited significantly higher neuronal activity in CA3, in response to the GABAA receptor antagonist, bicuculline, as compared with wild type mice. Density and volume of dendritic spines in pyramidal neurons were reduced and Sholl analysis also showed a reduction in the complexity of basal dendritic tree in CA1 and CA3 subregions of Df(h22q11)/+ mice. Overall, our findings demonstrate that hemizygous deletion in the 22q11.2 locus leads to dysregulations in the inhibitory circuits, involving reduced binding levels of GABAA receptors, in addition to functional and structural modulations of the excitatory networks of hippocampus.


Assuntos
Hipocampo , Receptores de GABA-A , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Muscimol/metabolismo , Muscimol/farmacologia , Células Piramidais/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Cereb Cortex ; 31(3): 1609-1621, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33123721

RESUMO

The 15q13.3 deletion is associated with multiple neurodevelopmental disorders including epilepsy, schizophrenia, and autism. The Df(h15q13)/+ mouse model was recently generated that recapitulates several phenotypic features of the human 15q13.3 deletion syndrome (DS). However, the biological substrates underlying these phenotypes in Df(h15q13)/+ mice have not yet been fully characterized. RNA sequencing followed by real-time quantitative PCR, western blotting, liquid chromatography-mass spectrometry, and stereological analysis were employed to dissect the molecular, structural, and neurochemical phenotypes of the medial prefrontal cortex (mPFC) circuits in Df(h15q13)/+ mouse model. Transcriptomic profiling revealed enrichment for astrocyte-specific genes among differentially expressed genes, translated by a decrease in the number of glial fibrillary acidic protein positive cells in mPFC of Df(h15q13)/+ mice compared with wild-type mice. mPFC in Df(h15q13)/+ mice also showed a deficit of the inhibitory presynaptic marker GAD65, in addition to a reduction in dendritic arborization and spine density of pyramidal neurons from layers II/III. mPFC levels of GABA and glutamate neurotransmitters were not different between genotypes. Our results suggest that the 15q13.3 deletion modulates nonneuronal circuits in mPFC and confers molecular and morphometric alterations in the inhibitory and excitatory neurocircuits, respectively. These alterations potentially contribute to the phenotypes accompanied with the 15q13.3DS.


Assuntos
Astrócitos/patologia , Transtornos Cromossômicos/patologia , Transtornos Cromossômicos/fisiopatologia , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Convulsões/patologia , Convulsões/fisiopatologia , Sinapses/patologia , Animais , Deleção Cromossômica , Cromossomos Humanos Par 15 , Modelos Animais de Doenças , Masculino , Camundongos
3.
Hippocampus ; 31(4): 435-447, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33464704

RESUMO

Down syndrome (DS), a genetic condition caused by triplication of chromosome 21, is characterized by alterations in various cognitive domains, including hippocampus-dependent memory functions, starting from early life stages. The major causes of intellectual disability in DS are prenatal neurogenesis alterations followed by impairment of dendritic development in early infancy. While there is evidence that the Ts65Dn mouse, the most widely used model of DS, exhibits dendritic alterations in adulthood, no studies are available regarding the onset of dendritic pathology. The goal of the current study was to establish whether this model exhibits early dendritic alterations in the hippocampus, a region whose function is severely damaged in DS. To this purpose, in Golgi-stained brains, we evaluated the dendritic arborization and dendritic spines of the granule cells of the hippocampal dentate gyrus in Ts65Dn mice aged 8 (P8) and 15 (P15) days. While P15 Ts65Dn mice exhibited a notably hypotrophic dendritic arbor and a reduced spine density, P8 mice exhibited a moderate reduction in the number of dendritic ramifications and no differences in spine density in comparison with their euploid counterparts. Both in P8 and P15 mice, spines were longer and had a longer neck, suggesting possible alterations in synaptic function. Moreover, P8 and P15 Ts65Dn mice had more thin spines and fewer stubby spines in comparison with euploid mice. Our study provides novel evidence on the onset of dendritic pathology, one of the causes of intellectual disability in DS, showing that it is already detectable in the dentate gyrus of Ts65Dn pups. This evidence strengthens the suitability of this model of DS as a tool to study dendritic pathology in DS and to test the efficacy of early therapeutic interventions aimed at ameliorating hippocampal development and, therefore, memory functions in children with DS.


Assuntos
Síndrome de Down , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese
4.
Mol Neurobiol ; 57(12): 4978-4988, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32820460

RESUMO

The 22q11.2 deletion has been identified as a risk factor for multiple neurodevelopmental disorders. Behavioral and cognitive impairments are common among carriers of the 22q11.2 deletion. Parvalbumin expressing (PV+) interneurons provide perisomatic inhibition of excitatory neuronal circuits through GABAA receptors, and a deficit of PV+ inhibitory circuits may underlie a multitude of the behavioral and functional deficits in the 22q11.2 deletion syndrome. We investigated putative deficits of PV+ inhibitory circuits and the associated molecular, morphological, and functional alterations in the prefrontal cortex (PFC) of the Df(h22q11)/+ mouse model of the 22q11.2 hemizygous deletion. We detected a significant decrease in the number of PV+ interneurons in layers II/III of PFC in Df(h22q11)/+ mice together with a reduction in the mRNA and protein levels of GABAA (α3), a PV+ putative postsynaptic receptor subunit. Pyramidal neurons from the same layers further experienced morphological reorganizations of spines and dendrites. Accordingly, a decrease in the levels of the postsynaptic density protein 95 (PSD95) and a higher neuronal activity in response to the GABAA antagonist bicuculline were measured in these layers in PFC of Df(h22q11)/+ mice compared with their wild-type littermates. Our study shows that a hemizygotic deletion of the 22q11.2 locus leads to deficit in the GABAergic control of network activity and involves molecular and morphological changes in both the inhibitory and excitatory synapses of parvalbumin interneurons and pyramidal neurons specifically in layers II/III PFC.


Assuntos
Forma Celular , Síndrome de DiGeorge/patologia , Interneurônios/patologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/patologia , Animais , Bicuculina/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Interneurônios/metabolismo , Masculino , Camundongos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
5.
J Chem Neuroanat ; 94: 119-124, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30385398

RESUMO

BACKGROUND: Spine geometry is considered to reflect synapse function. An accurate and fast method for 3D reconstruction of spines is considered a valuable tool for the purpose of studying spine geometry. Currently, most studies employ manual or automatic reconstruction methods, which still suffer from either poor accuracy or extreme time-consumption. The semi-automatic reconstruction method has previously been described as a time-economic and accurate tool for spine number counting. The purpose of this study is to further validate the semi-automatic method with regards to spine geometry investigation, by comparing it with the manual method as well as with the automatic method. METHODS: In this study, dendritic trees of six pyramidal neurons that belong to layers II/III of mouse frontal cortex are stained using the Golgi method. Thereafter, spines from 42 dendritic branches are 3D reconstructed by manual, semi-automatic and automatic methods using Imaris software. Spine features, including spine volume, spine area, spine length and spine neck length, and the relative distribution of classified stubby, mushroom and thin spines are compared between the semi-automatic method and the two other methods. RESULTS: Results from the semi-automatic and the manual reconstruction methods are in line with respect to all measured spine geometric features as well as spine classes. However, significant difference has been detected between the two methods and the automatic method in spine length, spine neck length and spine volume. Compared to the manual method, both the semi-automatic and the automatic methods have significantly reduced the spine reconstruction time. CONCLUSION: These findings suggest that the semi-automatic method may represent both a time-economic and reliable option for the purpose of studying spine geometry.


Assuntos
Espinhas Dendríticas/fisiologia , Lobo Frontal/citologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Células Piramidais/citologia , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA