RESUMO
We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.
Assuntos
Deficiências do Desenvolvimento/genética , Nanismo/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Mutação/genética , Adulto , Alelos , Animais , Criança , Espinhas Dendríticas/genética , Drosophila/genética , Feminino , Humanos , Masculino , Camundongos , Arábia Saudita , Sinapses/genética , Adulto JovemRESUMO
The paradigm of a single gene associated with one specific phenotype and mode of inheritance has been repeatedly challenged. Genotype-phenotype correlations can often be traced to different mutation types, localization of the variants in distinct protein domains, or the trigger of or escape from nonsense-mediated decay. Using whole-exome sequencing, we identified homozygous variants in EMC1 that segregated with a phenotype of developmental delay, hypotonia, scoliosis, and cerebellar atrophy in three families. In addition, a de novo heterozygous EMC1 variant was seen in an individual with a similar clinical and MRI imaging phenotype. EMC1 encodes a member of the endoplasmic reticulum (ER)-membrane protein complex (EMC), an evolutionarily conserved complex that has been proposed to have multiple roles in ER-associated degradation, ER-mitochondria tethering, and proper assembly of multi-pass transmembrane proteins. Perturbations of protein folding and organelle crosstalk have been implicated in neurodegenerative processes including cerebellar atrophy. We propose EMC1 as a gene in which either biallelic or monoallelic variants might lead to a syndrome including intellectual disability and preferential degeneration of the cerebellum.
Assuntos
Atrofia/genética , Deficiências do Desenvolvimento/genética , Variação Genética , Hipotonia Muscular/genética , Proteínas/genética , Escoliose/genética , Adolescente , Alelos , Sequência de Aminoácidos , Atrofia/diagnóstico , Cerebelo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Degradação Associada com o Retículo Endoplasmático , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana , Dados de Sequência Molecular , Hipotonia Muscular/diagnóstico , Mutação , Linhagem , Dobramento de Proteína , Proteínas/metabolismo , Escoliose/diagnósticoRESUMO
An increasing number of mitochondrial diseases are found to be caused by pathogenic variants in nuclear encoded mitochondrial aminoacyl-tRNA synthetases. FARS2 encodes mitochondrial phenylalanyl-tRNA synthetase (mtPheRS) which transfers phenylalanine to its cognate tRNA in mitochondria. Since the first case was reported in 2012, a total of 21 subjects with FARS2 deficiency have been reported to date with a spectrum of disease severity that falls between two phenotypes; early onset epileptic encephalopathy and a less severe phenotype characterized by spastic paraplegia. In this report, we present an additional 15 individuals from 12 families who are mostly Arabs homozygous for the pathogenic variant Y144C, which is associated with the more severe early onset phenotype. The total number of unique pathogenic FARS2 variants known to date is 21 including three different partial gene deletions reported in four individuals. Except for the large deletions, all variants but two (one in-frame deletion of one amino acid and one splice-site variant) are missense. All large deletions and the single splice-site variant are in trans with a missense variant. This suggests that complete loss of function may be incompatible with life. In this report, we also review structural, functional, and evolutionary significance of select FARS2 pathogenic variants reported here.
Assuntos
Aminoacil-tRNA Sintetases/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fenilalanina-tRNA Ligase/genética , Adolescente , Adulto , Aminoacil-tRNA Sintetases/deficiência , Criança , Pré-Escolar , Feminino , Deleção de Genes , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/deficiência , Mutação/genética , Paraplegia/genética , Paraplegia/patologia , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/deficiência , Isoformas de Proteínas/genética , Relação Estrutura-Atividade , Adulto JovemRESUMO
F-box and leucine-rich repeat protein 4 (FBXL4) is a mitochondrial protein whose exact function is not yet known. However, cellular studies have suggested that it plays significant roles in mitochondrial bioenergetics, mitochondrial DNA (mtDNA) maintenance, and mitochondrial dynamics. Biallelic pathogenic variants in FBXL4 are associated with an encephalopathic mtDNA maintenance defect syndrome that is a multisystem disease characterized by lactic acidemia, developmental delay, and hypotonia. Other features are feeding difficulties, growth failure, microcephaly, hyperammonemia, seizures, hypertrophic cardiomyopathy, elevated liver transaminases, recurrent infections, variable distinctive facial features, white matter abnormalities and cerebral atrophy found in neuroimaging, combined deficiencies of multiple electron transport complexes, and mtDNA depletion. Since its initial description in 2013, 36 different pathogenic variants in FBXL4 were reported in 50 affected individuals. In this report, we present 37 additional affected individuals and 11 previously unreported pathogenic variants. We summarize the clinical features of all 87 individuals with FBXL4-related mtDNA maintenance defect, review FBXL4 structure and function, map the 47 pathogenic variants onto the gene structure to assess the variants distribution, and investigate the genotype-phenotype correlation. Finally, we provide future directions to understand the disease mechanism and identify treatment strategies.
Assuntos
DNA Mitocondrial/genética , Proteínas F-Box/genética , Estudos de Associação Genética , Encefalomiopatias Mitocondriais/genética , Ubiquitina-Proteína Ligases/genética , Acidose Láctica/genética , Cardiomiopatia Hipertrófica/genética , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Mitocôndrias/genética , Encefalomiopatias Mitocondriais/epidemiologia , Encefalomiopatias Mitocondriais/patologia , Proteínas Mitocondriais/genética , Hipotonia Muscular/genética , Mutação , Fosforilação Oxidativa , Proteoma/genéticaRESUMO
Nuclear genetic disorders causing mitochondrial DNA (mtDNA) depletion are clinically and genetically heterogeneous, and the molecular etiology remains undiagnosed in the majority of cases. Through whole-exome sequencing, we identified recessive nonsense and splicing mutations in FBXL4 segregating in three unrelated consanguineous kindreds in which affected children present with a fatal encephalopathy, lactic acidosis, and severe mtDNA depletion in muscle. We show that FBXL4 is an F-box protein that colocalizes with mitochondria and that loss-of-function and splice mutations in this protein result in a severe respiratory chain deficiency, loss of mitochondrial membrane potential, and a disturbance of the dynamic mitochondrial network and nucleoid distribution in fibroblasts from affected individuals. Expression of the wild-type FBXL4 transcript in cell lines from two subjects fully rescued the levels of mtDNA copy number, leading to a correction of the mitochondrial biochemical deficit. Together our data demonstrate that mutations in FBXL4 are disease causing and establish FBXL4 as a mitochondrial protein with a possible role in maintaining mtDNA integrity and stability.
Assuntos
DNA Mitocondrial/genética , Proteínas F-Box/genética , Predisposição Genética para Doença , Encefalomiopatias Mitocondriais/genética , Mutação/genética , Ubiquitina-Proteína Ligases/genética , Acidose Láctica/complicações , Acidose Láctica/genética , Acidose Láctica/patologia , Sequência de Bases , Criança , Pré-Escolar , Segregação de Cromossomos/genética , Transporte de Elétrons/genética , Proteínas F-Box/química , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Dosagem de Genes/genética , Genes Recessivos/genética , Humanos , Lactente , Recém-Nascido , Masculino , Encefalomiopatias Mitocondriais/complicações , Encefalomiopatias Mitocondriais/patologia , Dados de Sequência Molecular , Músculo Esquelético/patologia , Fosforilação Oxidativa , Linhagem , Transporte Proteico , Ubiquitina-Proteína Ligases/químicaRESUMO
The aim of this study is to develop a rapid and effective method to screen for Saudi carriers of one of the most common propionic acidemia mutations (c.425G > A) and to study the functional impact of this mutation. Using allele-specific primers, we have developed a qPCR assay that clearly distinguishes heterozygotes from mutated and wild type homozygotes that overcome the dependence on labor-intensive gene sequencing. We show here that (i) qPCR rapid test has strong accuracy in detecting (c.425G > A) mutation in heterozygotes and homozygotes individuals and that the Ct-value cut-offs were estimated to be and 23.37 ± 0.04 (CV-6 %, 95 %CI-7.25) for homozygote, 25.06 ± 0.02 (CV-3.5 %, 95 %CI-7.85) for heterozygote PCCA c.425G > A mutation and 29.55 ± 0.002 (CV-11 %, 95 %CI-1.41) for PCCA wild type; (ii) the incidence of PA heterozygotes/carriers in Saudi population is about 550/100,000; (iii) skin fibroblast assays show that homozygote c.425G > A mutation induced propionyl-CoA carboxylase activity abrogation, (iv) PA patients showed an increased level of propionyl carnitine C3 in blood and 3-hydroxy propionic acid and methyl citrate in urine. Conclusion: qPCR represent an effective strategy to assess for PCCA mutation carriers in the Saudi population and we believe that will help in preventing homozygosity in the population after been implemented in pre-marriage screening program.
RESUMO
Background: Leukodystrophies (LDs) are inherited heterogeneous conditions that affect the central nervous system with or without peripheral nerve involvement. They are individually rare, but collectively, they are common. Thirty disorders were included by the Global Leukodystrophy Initiative Consortium (GLIA) as LDs. Methods: We conducted a retrospective chart review of a consecutive series of patients diagnosed with different types of LD from four large tertiary referral centers in Riyadh, Saudi Arabia. Only those 30 disorders defined by GLIA as LDs were included. Results: In total, 83 children from 61 families were identified and recruited for this study. The male-to-female ratio was 1.5:1, and a consanguinity rate of 58.5% was observed. An estimated prevalence of 1:48,780 or 2.05/100,000 was observed based on the clinical cohort, whereas a minimum of 1:32,857 or 3.04/100,000 was observed based on the local genetic database. The central region of the country exhibited the highest prevalence of LDs (48.5%). The most common LD was metachromatic leukodystrophy (MLD), and it accounted for 25.3%. The most common disorder based on carrier frequency was AGS. Novel variants were discovered in 51% of the cases, but 49% possessed previously reported variants. Missense variants were high in number and accounted for 73% of all cases. Compared with other disorders, MLD due to saposin b deficiency was more common than expected, Pelizaeus-Merzbacher-like disease was more prevalent than Pelizaeus-Merzbacher disease, and X-linked adrenoleukodystrophy was less common than expected. The mortality rate among our patients with LD was 24%. Conclusion: To the best of our knowledge, this is the largest cohort of patients with LD from Saudi Arabia. We present epidemiological, clinical, radiological, and genetic data. Furthermore, we report 18 variants that have not been reported previously. These findings are of great clinical and molecular utility for diagnosing and managing patients with LD.
RESUMO
BACKGROUND: Childhood-onset cardiomyopathy is a heterogeneous group of conditions the cause of which is largely unknown. The influence of consanguinity on the genetics of cardiomyopathy has not been addressed at a large scale. METHODS: To unravel the genetic cause of childhood-onset cardiomyopathy in a consanguineous population, a categorized approach was adopted. Cases with childhood-onset cardiomyopathy were consecutively recruited. Based on the likelihood of founder mutation and on the clinical diagnosis, genetic test was categorized to either (1) targeted genetic test with targeted mutation test, single-gene test, or multigene panel for Noonan syndrome, or (2) untargeted genetic test with whole-exome sequencing or whole-genome sequencing. Several bioinformatics tools were used to filter the variants. RESULTS: Two-hundred five unrelated probands with various forms of cardiomyopathy were evaluated. The median age of presentation was 10 months. In 30.2% (n=62), targeted genetic test had a yield of 82.7% compared with 33.6% for whole-exome sequencing/whole-genome sequencing (n=143) giving an overall yield of 53.7%. Strikingly, 96.4% of the variants were homozygous, 9% of which were found in 4 dominant genes. Homozygous variants were also detected in 7 novel candidates (ACACB, AASDH, CASZ1, FLII, RHBDF1, RPL3L, ULK1). CONCLUSIONS: Our work demonstrates the impact of consanguinity on the genetics of childhood-onset cardiomyopathy, the value of adopting a categorized population-sensitive genetic approach, and the opportunity of uncovering novel genes. Our data suggest that if a founder mutation is not suspected, adopting whole-exome sequencing/whole-genome sequencing as a first-line test should be considered.
Assuntos
Cardiomiopatias/genética , Acetil-CoA Carboxilase/genética , Adolescente , Cardiomiopatias/diagnóstico , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Testes Genéticos/métodos , Homozigoto , Humanos , Lactente , Recém-Nascido , L-Aminoadipato-Semialdeído Desidrogenase/genética , Masculino , Linhagem , Fatores de Transcrição/genética , Sequenciamento do ExomaRESUMO
Propionic acidemia (PA) is an autosomal recessive metabolic disorder. PA is characterized by deficiency of the mitochondrial enzyme propionyl CoA carboxylase (PCC) that results in the accumulation of propionic acid. Alpha and beta subunits of the PCC enzyme are encoded by the PCCA and PCCB genes, respectively. Pathogenic variants in PCCA or PCCB disrupt the function of the PCC enzyme preventing the proper breakdown of certain amino acids and metabolites. To determine the frequency of pathogenic variants in PA in our population, 84 Saudi Arabian patients affected with PA were sequenced for both the PCCA and PCCB genes. We found that variants in PCCA accounted for 81% of our cohort (68 patients), while variants in PCCB only accounted for 19% (16 patients). In total, sixteen different sequence variants were detected in the study, where 7 were found in PCCA and 9 in PCCB. The pathogenic variant (c.425Gâ¯>â¯A; p.Gly142Asp) in PCCA is the most common cause of PA in our cohort and was found in 59 families (70.2%), followed by the frameshift variant (c.990dupT; p.E331Xfs*1) in PCCB that was found in 7 families (8.3%). The p.Gly142Asp missense variant is likely to be a founder pathogenic variant in patients of Saudi Arabian tribal origin and is associated with a severe phenotype. All variants were inherited in a homozygous state except for one family who was compound heterozygous. A total of 11 novel pathogenic variants were detected in this study thereby increasing the known spectrum of pathogenic variants in the PCCA and PCCB genes.
RESUMO
Herein, we report a conceptually novel clinical case highlighting the diagnostic implications of excessive homozygosity and its correlation with brain MRI abnormalities in an infant with GA1. The case also points a need for an extra amount of caution to be exercised when evaluating patients with "negative exomes."
RESUMO
BACKGROUND: Neurodevelopment is orchestrated by a wide range of genes, and the genetic causes of neurodevelopmental disorders are thus heterogeneous. We applied whole exome sequencing (WES) for molecular diagnosis and in silico analysis to identify novel disease gene candidates in a cohort from Saudi Arabia with primarily Mendelian neurologic diseases. METHODS: We performed WES in 31 mostly consanguineous Arab families and analyzed both single nucleotide and copy number variants (CNVs) from WES data. Interaction/expression network and pathway analyses, as well as paralog studies were utilized to investigate potential pathogenicity and disease association of novel candidate genes. Additional cases for candidate genes were identified through the clinical WES database at Baylor Miraca Genetics Laboratories and GeneMatcher. RESULTS: We found known pathogenic or novel variants in known disease genes with phenotypic expansion in 6 families, disease-associated CNVs in 2 families, and 12 novel disease gene candidates in 11 families, including KIF5B, GRM7, FOXP4, MLLT1, and KDM2B. Overall, a potential molecular diagnosis was provided by variants in known disease genes in 17 families (54.8 %) and by novel candidate disease genes in an additional 11 families, making the potential molecular diagnostic rate ~90 %. CONCLUSIONS: Molecular diagnostic rate from WES is improved by exome-predicted CNVs. Novel candidate disease gene discovery is facilitated by paralog studies and through the use of informatics tools and available databases to identify additional evidence for pathogenicity. TRIAL REGISTRATION: Not applicable.
Assuntos
Árabes/genética , Consanguinidade , Exoma/genética , Técnicas de Diagnóstico Molecular , Doenças do Sistema Nervoso/genética , Linhagem , Análise de Sequência de DNA , Estudos de Coortes , Variações do Número de Cópias de DNA , Mineração de Dados , Bases de Dados Genéticas , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Doenças do Sistema Nervoso/diagnóstico , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
We report a case of Goldenhar syndrome and hereditary tyrosinemia type 1 (HTT1), to our knowledge an association not previously described. This case further increases the diversity of observations and clinical descriptions of patients with this complex syndrome. We discuss pathogenetic aspects, and demonstrate further evidence of the effectiveness of 2-(2-nitro-4-trifluoromethyl benzoyl)-1,3-cyclohexanedione in the treatment of HTT1.
Assuntos
Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/terapia , Agenesia do Corpo Caloso , Consanguinidade , Epilepsia/diagnóstico , Epilepsia/etiologia , Epilepsia/terapia , Feminino , Hospitais Pediátricos , Humanos , Hiperglicinemia não Cetótica/complicações , Lactente , Recém-Nascido , Masculino , Malformações do Sistema Nervoso/complicações , Arábia SauditaRESUMO
OBJECTIVE: The objective of this study was to identify the patterns of prescribing for Acute respiratory infections in patients attending primary health care centers in the Aseer region, southwestern Saudi Arabia. MATERIALS #ENTITYSTARTX00026; METHODS: This study was conducted at primary health care centers in the Aseer region during November 2003. A master sheet designed by the investigator was distributed to all the working physicians in the primary health care center in the Aseer region. The master sheet included the age, sex, complaints, signs, clinical diagnosis and the type of medications prescribed. Physicians were asked to include all patients attending on 17(th) November 2003, and send the master sheet to the Technical Supervision Unit at Primary Care Department, General Directorate of Health Affairs. Data of the master sheet was entered and analyzed by using SPSS. RESULTS: The total number of patients attending with acute respiratory infections(ARIs) was 3000 which represented 25% of the patients attending primary health care centers that day. Children formed 60% of the total number of cases. Regarding symptoms and signs, it was found that 70% had a cough, 59% had a runny nose, and 43% had a sore throat . The common cold was the most common diagnosis (42%). Antipyretics, antihistamines, antibiotics and antitussives were prescribed for 78%, 48%, 45% and 25% respectively. Statistical analysis using logistic regression revealed that the higher the temperature, the more severe the throat congestion and the presence of exudates on pharynx, the higher the likelihood to prescribe antibiotics. CONCLUSION: In this study, it was found that the prescription of all drugs for ARIs was still high in spite of the fact that these conditions are self-limiting. To rationalize prescribing for ARI, implementation of the national protocol for diagnosis and treatment of ARIs is mandatory. Further studies to explore the physician's knowledge, attitudes and behavior concerning prescribing for ARI is strongly recommended.