Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Phytoremediation ; 26(10): 1626-1642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644591

RESUMO

Drought is a threat to food security and agricultural sustainability in arid and semi-arid countries. Using wasted silica nanoparticles could minimize water scarcity. A controlled study investigated wheat plant physiological and morphological growth under tap-water irrigation (80-100, 60-80, and 40-60% field capacity). The benefits of S1: 0%, S2: 5%, and S3: 10% nanoparticle silica soil additions were studied. Our research reveals that water stress damages the physiological and functional growth of wheat plants. Plant height decreased by 8.9%, grain yield by 5.4%, and biological yield by 19.2%. These effects were observed when plants were irrigated to 40-60% field capacity vs. control. In plants under substantial water stress (40-60% of field capacity), chlorophyll a (8.04 mg g-1), b (1.5 mg g-1), total chlorophyll (9.55 mg g-1), carotenoids (2.44 mg g-1), and relative water content (54%), Electrolyte leakage (59%), total soluble sugar (1.79 mg g-1 fw), and proline (80.3 mol g-1) were highest. Plants cultivated with silica nanoparticles exhibit better morphological and physiological growth than controls. The largest effect came from maximum silica nanoparticle loading. Silica nanoparticles may increase drought-stressed plant growth and production.


This study investigates the impact of silica nanoparticles on the development of wheat plants experiencing water stress. Silica nanoparticles are essential for stimulating biochemical defenses against water stress, although research is limited. In stressed wheat plants, silica nanoparticles as a soil supplement increased biological and grain yield. Wheat grown under drought conditions will benefit from this study.


Assuntos
Nanopartículas , Dióxido de Silício , Triticum , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Biodegradação Ambiental , Desidratação , Resíduos , Clorofila/metabolismo , Irrigação Agrícola
2.
J Chem Inf Model ; 63(8): 2305-2320, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37036888

RESUMO

The principal objective in the treatment of e-waste is to capture the bromine released from the brominated flame retardants (BFRs) added to the polymeric constituents of printed circuits boards (PCBs) and to produce pure bromine-free hydrocarbons. Metal oxides such as calcium hydroxide (Ca(OH)2) have been shown to exhibit high debromination capacity when added to BFRs in e-waste and capturing the released HBr. Tetrabromobisphenol A (TBBA) is the most commonly utilized model compound as a representative for BFRs. Our coauthors had previously studied the pyrolytic and oxidative decomposition of the TBBA:Ca(OH)2 mixture at four different heating rates, 5, 10, 15, and 20 °C/min, using a thermogravimetric (TGA) analyzer and reported the mass loss data between room temperature and 800 °C. However, in the current work, we applied different machine learning (ML) and chemometric techniques involving regression models to predict the TGA data at different heating rates. The motivation of this work was to reproduce the TGA data with high accuracy in order to eliminate the physical need of the instrument itself, so that this could save significant experimental time involving sample preparation and subsequently minimizing human errors. The novelty of our work lies in the application of ML techniques to predict the TGA data from e-waste pyrolysis since this has not been conducted previously. The significance of our work lies in the fact that e-waste is ever increasing, and predicting the mass loss curves faster will enable better compositional analysis of the e-waste samples in the industry. Three ML models were employed in our work, namely Linear, random forest (RF), and support vector regression (SVR), out of which the RF method exhibited the highest coefficient of determination (R2) of 0.999 and least error of prediction as estimated by the root mean squared error (RMSEP) at all 4 heating rates for both pyrolysis and oxidation conditions. An 80:20 split was used for calibration and validation data sets. Furthermore, for showing versatility and robustness of the best-predicting RF model, it was also trained using all the data points in the lower heating rates of 5 and 10 °C/min and predicted on all the data points for the higher heating rates of 15 and 20 °C/min to again obtain a high R2 of 0.999. The excellent performance of the RF model showed that ML techniques can be used to eliminate the physical use of TGA equipment, thus saving experimental time and potential human errors, and can further be applied in other real-time e-waste recycling scenarios.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Hidrocarbonetos Bromados , Bifenil Polibromatos , Humanos , Bromo , Resíduo Eletrônico/análise , Retardadores de Chama/análise , Hidrocarbonetos Bromados/análise , Bifenil Polibromatos/análise , Aprendizado de Máquina
3.
J Environ Manage ; 271: 110970, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778274

RESUMO

The concentrative isolation of metal traces from aqueous solutions is of vital importance for environmental and industrial processes. Developing reliable systems of nanoscale that can be fine-tuned to effectively isolate these metals remains an intriguing aim which can potentially beget economic benefits and mitigate major environmental concerns. Here we demonstrate a conceptual metal extraction system where magnetic multi-wall carbon nanotubes (M-MWCNTs) are surface-equipped with a molecular network of polyethylenimine (PEI) to serve as a reusable nano-ionic exchanger, referred to as "M-MWCNTs-PEI". The designed nano-ionic exchanger forms readily stable suspensions with the metal-bearing aqueous solutions eliminating the need for vigorous agitation. Besides, it can be magnetically manipulated and separated in/from the solution. To exemplify its potential for the isolation of metal traces, the M-MWCNTs-PEI was tested with the uranium trace ions in aqueous media. The M-MWCNTs-PEI featured distinct sorption capacity of ~488 mg/g at pH 6, with moderate, but stable, binding affinity toward uranium ions. As such, excellent isolation performance is demonstrated while bound uranium ions are effectively concentrated and recovered from the interfacial PEI molecular network. This was efficiently achieved by exposing the loaded M-MWCNTs-PEI to solutions of small volumes and specific chemistry. Such combined qualities of large capacity and reusability have not been observed with the previously reported ion exchange systems. Altogether, our observations here demonstrate how functional systems of nanoscale can be adapted for industrial applications while this concept can be extended to address other important resources such as rare-earth and lanthanide elements.


Assuntos
Nanotubos de Carbono , Urânio , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Soluções , Suspensões
4.
Phys Chem Chem Phys ; 20(2): 1221-1230, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243754

RESUMO

Hydrogen halides (HCl/HBr) represent major halogen fragments from the thermal decomposition of halogen laden materials, most notably PVC and brominated flame retardants (BFRs). Co-pyrolysis of halogen-containing solid waste with metal oxides is currently deployed as a mainstream strategy to treat halogen content as well as to recycle the valuable metallic fraction embedded in electric arc furnace dust (EAFD) and e-waste. However, designing an industrial-scale recycling facility necessitates accurate knowledge on mechanistic and thermo-kinetic parameters dictating the interaction between metal oxides and hydrogen halides. In this contribution, we investigate chemical interplay between HCl/HBr and zincite surfaces as a representative model for structures of zinc oxides in EAFD by using different sets of functionals, unit cell size and energy cut-off. In the first elementary step, dissociative adsorption of the HCl/HBr molecules affords oxyhalide structures (Cl/Br-Zn, H-O) via modest activation barriers. Conversion of the oxyhalide structure into zinc halides occurs through two subsequent steps, further dissociative adsorption of HCl/Br over the same surface Zn atom as well as the release of a H2O molecule. Evaporation (or desorption of zinc halide molecules) signifies a bottleneck for the overall halogenation of ZnO. Our simplified kinetic model on the HCl + ZnO system concurs very well with experimentally reported TGA weight loss profiles on two grounds: accumulation of oxyhalides until ∼700 K and desorption of ZnCl2 at higher temperatures. The thermo-kinetic and mechanistic aspects reported herein could be useful in the pursuit of a design of a large-scale catalytic upgrading unit that operates to extract valuable zinc loads from EAFD.

5.
Turk J Chem ; 48(1): 85-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544895

RESUMO

First- and second-generation hydroxyl-terminated dendrimers were prepared starting from a 1,3-diaminopropane core and sulfonimide linkers. A first-generation mesitylene-derived dendrimer was also prepared with the same terminals. The dendrimers were then reacted with Fe3+, Al3+, and UO22+ separately in order to apply the dendrimers for binding these metals, which have important industrial applications and pose environmental problems simultaneously. The prepared dendrimers were also shown to bind Fe3+ selectively from mixtures with Al3+.

6.
ACS Omega ; 8(45): 43254-43270, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024703

RESUMO

The release of bromine-free hydrocarbons and gases is a major challenge faced in the thermal recycling of e-waste due to the corrosive effects of produced HBr. Metal oxides such as Fe2O3 (hematite) are excellent debrominating agents, and they are copyrolyzed along with tetrabromophenol (TBP), a lesser used brominated flame retardant that is a constituent of printed circuit boards in electronic equipment. The pyrolytic (N2) and oxidative (O2) decomposition of TBP with Fe2O3 has been previously investigated with thermogravimetric analysis (TGA) at four different heating rates of 5, 10, 15, and 20 °C/min, and the mass loss data between room temperature and 800 °C were reported. The objective of our paper is to study the effectiveness of machine learning (ML) techniques to reproduce these TGA data so that the use of the instrument can be eliminated to enhance the potential of online monitoring of copyrolysis in e-waste treatment. This will reduce experimental and human errors as well as improve process time significantly. TGA data are both nonlinear and multidimensional, and hence, nonlinear regression techniques such as random forest (RF) and gradient boosting regression (GBR) showed the highest prediction accuracies of 0.999 and lowest prediction errors among all the ML models employed in this work. The large data sets allowed us to explore three different scenarios of model training and validation, where the number of training samples were varied from 10,000 to 40,000 for both TBP and TBP + hematite samples under N2 (pyrolysis) and O2 (combustion) environments. The novelty of our study is that ML techniques have not been employed for the copyrolysis of these compounds, while the significance is the excellent potential of enhanced online monitoring of e-waste treatment and extension to other characterization techniques such as spectroscopy and chromatography. Lastly, e-waste recycling could greatly benefit from ML applications since it has the potential to reduce total and operational costs and improve overall process time and efficiency, thereby encouraging more treatment plants to adopt these techniques, resulting in reducing the increasing environmental footprint of e-waste.

7.
RSC Adv ; 13(10): 6966-6982, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865571

RESUMO

Thermal treatment of bromine-contaminated polymers (i.e., as in e-waste) with metal oxides is currently deployed as a mainstream strategy in recycling and resources recovery from these objects. The underlying aim is to capture the bromine content and to produce pure bromine-free hydrocarbons. Bromine originates from the added brominated flame retardants (BFRs) to the polymeric fractions in printed circuits boards, where tetrabromobisphenol A (TBBA) is the most utilized BFR. Among notable deployed metal oxides is calcium hydroxide, i.e., Ca(OH)2 that often displays high debromination capacity. Comprehending thermo-kinetic parameters that account for the BFRs:Ca(OH)2 interaction is instrumental to optimize the operation at an industrial scale. Herein, we report comprehensive kinetics and thermodynamics studies into the pyrolytic and oxidative decomposition of a TBBA:Ca(OH)2 mixture at four different heating rates, 5, 10, 15, and 20 °C min-1, carried out using a thermogravimetric analyser. Fourier Transform Infrared Spectroscopy (FTIR) and a carbon, hydrogen, nitrogen, and sulphur (CHNS) elemental analyser established the vibrations of the molecules and carbon content of the sample. From the thermogravimetric analyser (TGA) data, the kinetic and thermodynamic parameters were evaluated using iso-conversional methods (KAS, FWO, and Starink), which were further validated by the Coats-Redfern method. The computed activation energies for the pyrolytic decomposition of pure TBBA and its mixture with Ca(OH)2 reside in the narrow ranges of 111.7-112.1 kJ mol-1 and 62.8-63.4 kJ mol-1, respectively (considering the various models). Obtained negative ΔS values suggest the formation of stable products. The synergic effects of the blend exhibited positive values in the low-temperature ranges (200-300 °C) due to the emission of HBr from TBBA and the solid-liquid bromination process occurring between TBBA and Ca(OH)2. From a practical point of view, data provided herein are useful in efforts that aim to fine-tune operational conditions encountered in real recycling scenarios, i.e., in co-pyrolysis of e-waste with Ca(OH)2 in rotary kilns.

8.
Waste Manag ; 137: 283-293, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823135

RESUMO

The effectiveness of a recycling approach of the printed circuit board (PCBs), and, thus, the quality of polymeric constituents, primarily rests on the capacity to eliminate the bromine content (mainly as HBr). HBr is emitted in appreciable quantities during thermal decomposition of PCB-contained brominated flame retardants (BFRs). The highly corrosive, yet relatively reactive HBr, renders recovery of bromine-free hydrocarbons streams from brominated polymers in PCBs very challenging. Via combined experimental and theoretical frameworks, this study explores the potential of deploying alumina (Al2O3) as a debromination agent of Br-containing hydrocarbon fractions in PCBs. A consensus from a wide array of characterization techniques utilized herein (ICP-OES, IC, XRD, FTIR, SEM-EDX, and TGA) clearly demonstrates the transformation of alumina upon its co-pyrolysis with the non-metallic fractions of PCBs, into aluminum bromides and oxy-bromides. ICP-OES measurements disclose the presence of high concentration of Cu in the non-metallic fraction of PCB, along with minor levels of selected valuable metals. Likewise, elemental ionic analysis by IC demonstrates an elevated concentration of bromine in washed alumina-PCBs pyrolysates, especially at 500 °C. The Coats-Redfern model facilitates the derivation of thermo-kinetic parameters underpinning the thermal degradation of alumina-PCB mixtures. Density functional theory calculations (DFT) establish an accessible reaction pathway for the HBr uptake by the alumina surface, thus elucidating chemical reactions governing the observed alumina debromination activity. Findings from this study illustrate the capacity of alumina as a HBr fixation agent during the thermal treatment of e-waste.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Óxido de Alumínio , Bromo , Resíduo Eletrônico/análise , Pirólise , Reciclagem
9.
Waste Manag Res ; 28(6): 568-74, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19837706

RESUMO

This study examines the possibility for enhancing the use of stone cutting sludge waste in the production of building bricks and terrazzo tiles, which would reduce both the environmental impact and the production costs. Stone cutting wastes in the form of sludge is currently generated at several factories in Jordan. At the Samara factory, incorporation of the sludge in the batch formulations of bricks and terrazzo tiles was examined. The physicochemical and mineralogical characteristics of the sludge were analyzed to identify the major components. Results indicated that the sludge generated from stone cutting could be used in producing concrete bricks. Mixtures of aggregates with added amounts of sludge were used successfully to produce non-load bearing bricks. Sludge was also used to produce terrazzo tiles and the results indicate that the transverse strength, water absorption and tile measurements, for all the taken samples, comply with Jordanian standards. The transverse strength decreased while water absorption increased as the sludge ratio increased.


Assuntos
Cerâmica/química , Conservação dos Recursos Naturais/métodos , Materiais de Construção , Esgotos/química , Gerenciamento de Resíduos/métodos , Absorção , Teste de Materiais
10.
Chemosphere ; 240: 124921, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726593

RESUMO

The interplay of phenolic molecules with 3d transition metals, such as Fe and Cu, and their oxide surfaces, provide important fingerprints for environmental burdens associated with thermal recycling of e-waste and subsequent generation of notorious dioxins compounds and phenoxy-type Environmental Persistent Free Radicals (EPFRs). DRIFTS and EPR measurements established a strong interaction of the phenol molecule with transition metal oxides via synthesis of phenolic- and catecholic-type EPFRs intermediates. In this contribution, we comparatively examined the dissociative adsorption of a phenol molecule, as the simplest model for phenolic-type compounds, on Cu and Fe surfaces and their partially oxidized configurations through accurate density functional theory (DFT) studies. The underlying aim is to elucidate the specific underpinning mechanism forming phenoxy- or phenolate-type EFPRs. Simulated results show that, the phenol molecule undergoes fission of its hydroxyl's O-H bond via accessible activation energies. These values are lower by 46.5-74.1% when compared with the analogous gas phase value. Physisorbed molecules of phenol incur very low binding energies in the range of -2.1 to -5.5 over clean Cu/Fe and their oxides surfaces. Molecular attributes based on charge transfer and geometrical features are in accord with the very weak interaction in physisorbed states. Thermo-kinetic parameters established over the temperature region of 300 and 1000 K, exhibit a lower activation energy for scission of phenolic's O-H bonds over the oxide surfaces in reference to their pure surfaces (24.7 and 43.0 kcal mol-1vs 38.4 and 47.0 kcal mol-1).


Assuntos
Radicais Livres/química , Fenol/química , Fenóis/química , Adsorção , Catecóis , Dioxinas , Radical Hidroxila , Oxirredução , Óxidos/química , Temperatura , Elementos de Transição
11.
Chemosphere ; 254: 126766, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957264

RESUMO

Co-pyrolysis of brominated flame retardants (BFRs) with polymeric materials prevails in scenarios pertinent to thermal recycling of bromine-laden objects; most notably the non-metallic fraction in e-waste. Hydro-dehalogenation of aromatic compounds in a hydrogen-donating medium constitutes a key step in refining pyrolysis oil of BFRs. Chemical reactions underpinning this process are poorly understood. Herein, we utilize accurate density functional theory (DFT) calculations to report thermo-kinetic parameters for the reaction of solid polyethylene, PE, (as a surrogate model for aliphatic polymers) with prime products sourced from thermal decomposition of BFRs, namely, HBr, bromophenols; benzene, and phenyl radical. Facile abstraction of an ethylenic H by Br atoms is expected to contribute to the formation of abundant HBr concentrations in practical systems. Likewise, a relatively low energy barrier for aromatic Br atom abstraction from a 2-bromophenol molecule by an alkyl radical site, concurs with the reported noticeable hydro-debromination capacity of PE. Pathways entailing a PE-induced bromination of a phenoxy radical should be hindered in view of high energy barrier for a Br transfer into the para position of the phenoxy radical. Adsorption of a phenoxy radical onto a Cu(Br) site substituted at the PE chain affords the commonly discussed PBDD/Fs precursor of a surface-bounded bromophenolate adduct. Such scenario arises due to the heterogeneous integration of metals into the bromine-rich carbon matrix in primitive recycling of e-waste and their open burning.


Assuntos
Retardadores de Chama/análise , Polietileno/química , Bromo , Halogenação , Hidrocarbonetos Bromados/análise , Cinética , Fenóis , Pirólise , Reciclagem
12.
Waste Manag ; 61: 307-314, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28110886

RESUMO

This study presents an alternative tactic to pyrolysis of auto tires avoiding the use of high temperature and increasing the yield of oil produced. It depends on a simple chemical treatment of auto tires with sodium carbonate at low temperature (50°C) followed by solvent extraction. This treatment produced two folds of the yield that can be obtained using normal solvent extraction. The experimental results suggests that sodium carbonate is responsible for breakage of CS bond in the main structure of auto tires making solvent extraction easier. Additionally, the sulphur content of the extracted oil using the sodium carbonate treatment is reduced significantly (by about 28%) making the product more favorable energy/fuel source. This technique allows about 30wt.% of oil to be extracted from the used auto tires at 50°C under atmospheric pressure resulted from the breakage of the sulphur cross-linking by the sodium carbonate.


Assuntos
Automóveis , Óleos/química , Resíduos Sólidos , Gerenciamento de Resíduos/métodos , Acetona/química , Fracionamento Químico , Hexanos/química , Espectroscopia de Ressonância Magnética , Óleos/análise , Borracha/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Enxofre/química , Temperatura
13.
J Hazard Mater ; 299: 425-36, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26183236

RESUMO

An investigation into the pyrolysis kinetics of PVC mixed with electric arc furnace dust (EAFD) was performed. Mixtures of both materials with varying PVC ratios (1:1, 1:2, 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at different heating rates (5, 10, 30 and 50 °C/min). The pyrolysis process proceeded through two main decomposition steps; the first step involved the release of HCl which reacted with the metal oxides present in the dust, subsequently forming metal chlorides and water vapor. Benzene was also found to release as detected by TGA-MS. The remaining hydrocarbons in the polymer backbone decomposed further in the second step releasing further volatile hydrocarbons. Different models were used to fit the kinetic data namely the integral, the Van Krevelen, and Coats and Red fern methods. The presence of EAFD during PVC decomposition resulted in a considerable decrease in the activation energy of the reaction occurring during the first decomposition region. Furthermore, iron oxides were retained in the pyrolysis residue, whilst other valuable metals, including Zn and Pb, were converted to chlorides that are recoverable by leaching in water. It is believed that EAFD can be utilized as an active catalyst to produce energy gases such as propyneas evident from the TGA-MS.

14.
J Hazard Mater ; 274: 87-97, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24769846

RESUMO

Microwave treatment of electric arc furnace dust (EAFD) with poly(vinyl chloride) (PVC) was studied in this work. A comprehensive characterization of the dust as well as assessing the suitability of using the thermal de-chlorination of the common plastic (PVC) under inert atmosphere was carried out to assess the possibility of Zn and other heavy metals extraction (Pb and Cd) from EAFD. The dielectric and thermal properties of EAFD, PVC and their mixtures were measured. Once combined and heated the metal oxides present in the dust reacted with HCl released from PVC during thermal de-chlorination, forming metal chlorides which were subsequently recovered by leaching with water. It was found that zinc chloride could be almost completely recovered in the leaching stage, with the overall recovery of Zn reaching 97% when the EAFD:PVC ratio was 1:2. The investigation highlighted that franklinite, the most refractory mineral to leaching, was completely destroyed. The leaching residue was found to compose mainly of magnetite and hematite.


Assuntos
Resíduos Industriais , Micro-Ondas , Cloreto de Polivinila/química , Gerenciamento de Resíduos/métodos , Poeira/análise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Ácido Clorídrico/química , Metalurgia , Metais/análise , Óxidos/química , Aço , Termogravimetria , Difração de Raios X
15.
J Hazard Mater ; 188(1-3): 414-21, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21349635

RESUMO

The aim of this work was to synthesis highly amorphous geopolymer from waste coal fly ash, to be used as an adsorbent for lead Pb(II) removal from aqueous wastewater. The effect of various parameters including geopolymer dosage, initial concentration, contact time, pH and temperature on lead adsorption were investigated. The major components of the used ash in the current study were SiO(2), Al(2)O(3) and Fe(2)O(3) representing 91.53 wt% of its mass. It was found that the synthesized geopolymer has higher removal capacity for lead ions when compared with that of raw coal fly ash. The removal efficiency increases with increasing geopolymer dosage, contact time, temperature, and the decrease of Pb(2+) initial concentration. The optimum removal efficiency was obtained at pH 5. Adsorption isotherm study indicated that Langmuir isotherm model is the best fit for the experimental data than Freundlich model. It was found also that the adsorption process is endothermic and more favorable at higher temperatures.


Assuntos
Carbono/química , Chumbo/isolamento & purificação , Material Particulado/química , Polímeros/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Cinza de Carvão , Concentração de Íons de Hidrogênio , Soluções , Temperatura
16.
Comput Theor Chem ; 970(1-3): 1-5, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22485200

RESUMO

Reaction and activation energy barriers are calculated for the H abstraction reactions (C(6)H(5)SH + X(•) â†’ C(6)H(5)S + XH, X = H, OH and HO(2)) at the BB1K/GTLarge level of theory. The corresponding reactions with H(2)S and CH(3)SH are also investigated using the G3B3 and CBS-QB3 methods in order to demonstrate the accuracy of BB1K functional in finding activation barriers for hydrogen atom transfer reactions. Arrhenius parameters for the title reactions are fitted in the temperature range of 300 K-2000 K. The calculated reaction enthalpies are in good agreement with their corresponding experimental reaction enthalpies. It is found that H abstraction by OH radicals from the thiophenol molecule proceed in a much slower rate in reference to the analogous phenol molecule. [Formula: see text] of thiophenoxy radical is calculated to be 63.3 kcal/mol. Kinetic parameters presented herein should be useful in describing the decomposition rate of thiophenol; i.e., one of the major aromatic sulfur carriers, at high temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA