Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Circ Res ; 122(11): 1545-1554, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669712

RESUMO

RATIONALE: Restoration of coronary artery blood flow is the most effective means of ameliorating myocardial damage triggered by ischemic heart disease. However, coronary reperfusion elicits an increment of additional injury to the myocardium. Accumulating evidence indicates that the unfolded protein response (UPR) in cardiomyocytes is activated by ischemia/reperfusion (I/R) injury. Xbp1s (spliced X-box binding protein 1), the most highly conserved branch of the unfolded protein response, is protective in response to cardiac I/R injury. GRP78 (78 kDa glucose-regulated protein), a master regulator of the UPR and an Xbp1s target, is upregulated after I/R. However, its role in the protective response of Xbp1s during I/R remains largely undefined. OBJECTIVE: To elucidate the role of GRP78 in the cardiomyocyte response to I/R using both in vitro and in vivo approaches. METHODS AND RESULTS: Simulated I/R injury to cultured neonatal rat ventricular myocytes induced apoptotic cell death and strong activation of the UPR and GRP78. Overexpression of GRP78 in neonatal rat ventricular myocytes significantly protected myocytes from I/R-induced cell death. Furthermore, cardiomyocyte-specific overexpression of GRP78 ameliorated I/R damage to the heart in vivo. Exploration of underlying mechanisms revealed that GRP78 mitigates cellular damage by suppressing the accumulation of reactive oxygen species. We go on to show that the GRP78-mediated cytoprotective response involves plasma membrane translocation of GRP78 and interaction with PI3 kinase, culminating in stimulation of Akt. This response is required as inhibition of the Akt pathway significantly blunted the antioxidant activity and cardioprotective effects of GRP78. CONCLUSIONS: I/R induction of GRP78 in cardiomyocytes stimulates Akt signaling and protects against oxidative stress, which together protect cells from I/R damage.


Assuntos
Proteínas de Choque Térmico/metabolismo , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resposta a Proteínas não Dobradas , Animais , Apoptose , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
2.
J Biol Chem ; 293(19): 7329-7343, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29593095

RESUMO

The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR). In this study, we investigated whether a variety of LOF PCSK9 variants that are retained in the ER can cause ER stress and hepatic cytotoxicity. Although overexpression of these PCSK9 variants caused an accumulation in the ER of hepatocytes, UPR activation or apoptosis was not observed. Furthermore, ER retention of endogenous PCSK9 via splice switching also failed to induce the UPR. Consistent with these in vitro studies, overexpression of PCSK9 in the livers of mice had no impact on UPR activation. To elucidate the cellular mechanism to explain these surprising findings, we observed that the 94-kDa glucose-regulated protein (GRP94) sequesters PCSK9 away from the 78-kDa glucose-regulated protein (GRP78), the major activator of the UPR. As a result, GRP94 knockdown increased the stability of GRP78-PCSK9 complex and resulted in UPR activation following overexpression of ER-retained PCSK9 variants relative to WT secreted controls. Given that overexpression of these LOF PCSK9 variants does not cause UPR activation under normal homeostatic conditions, therapeutic strategies aimed at blocking the autocatalytic cleavage of PCSK9 in the ER represent a viable strategy for reducing circulating PCSK9.


Assuntos
Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/metabolismo , Mutação com Perda de Função , Pró-Proteína Convertase 9/genética , Resposta a Proteínas não Dobradas/genética , Animais , Apoptose , Domínio Catalítico , Linhagem Celular , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Pró-Proteína Convertase 9/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Splicing de RNA
3.
J Biol Chem ; 292(51): 21180-21192, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29066620

RESUMO

Tumor cells display on their surface several molecular chaperones that normally reside in the endoplasmic reticulum. Because this display is unique to cancer cells, these chaperones are attractive targets for drug development. Previous epitope-mapping of autoantibodies (AutoAbs) from prostate cancer patients identified the 78-kDa glucose-regulated protein (GRP78) as one such target. Although we previously showed that anti-GRP78 AutoAbs increase tissue factor (TF) procoagulant activity on the surface of tumor cells, the direct effect of TF activation on tumor growth was not examined. In this study, we explore the interplay between the AutoAbs against cell surface-associated GRP78, TF expression/activity, and prostate cancer progression. First, we show that tumor GRP78 expression correlates with disease stage and that anti-GRP78 AutoAb levels parallel prostate-specific antigen concentrations in patient-derived serum samples. Second, we demonstrate that these anti-GRP78 AutoAbs target cell-surface GRP78, activating the unfolded protein response and inducing tumor cell proliferation through a TF-dependent mechanism, a specific effect reversed by neutralization or immunodepletion of the AutoAb pool. Finally, these AutoAbs enhance tumor growth in mice bearing human prostate cancer xenografts, and heparin derivatives specifically abrogate this effect by blocking AutoAb binding to cell-surface GRP78 and decreasing TF expression/activity. Together, these results establish a molecular mechanism in which AutoAbs against cell-surface GRP78 drive TF-mediated tumor progression in an experimental model of prostate cancer. Heparin derivatives counteract this mechanism and, as such, represent potentially appealing compounds to be evaluated in well-designed translational clinical trials.


Assuntos
Autoanticorpos/metabolismo , Membrana Celular/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Tromboplastina/agonistas , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Autoanticorpos/análise , Autoanticorpos/toxicidade , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Membrana Celular/patologia , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/uso terapêutico , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Gradação de Tumores , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/uso terapêutico , Estadiamento de Neoplasias , Próstata/efeitos dos fármacos , Próstata/imunologia , Próstata/patologia , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Distribuição Aleatória , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Propriedades de Superfície , Tromboplastina/análise , Tromboplastina/metabolismo , Carga Tumoral/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Biol Chem ; 285(37): 28912-23, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20605795

RESUMO

The increased risk of venous thromboembolism in cancer patients has been attributed to enhanced tissue factor (TF) procoagulant activity (PCA) on the surface of cancer cells. Recent studies have shown that TF PCA can be modulated by GRP78, an endoplasmic reticulum (ER)-resident molecular chaperone. In this study, we investigated the role of cell surface GRP78 in modulating TF PCA in several human cancer cell lines. Although both GRP78 and TF are present on the cell surface of cancer cells, there was no evidence of a stable interaction between recombinant human GRP78 and TF, nor was there any effect of exogenously added recombinant GRP78 on cell surface TF PCA. Treatment of cells with the ER stress-inducing agent thapsigargin, an inhibitor of the sarco(endo)plasmic reticulum Ca(2+) pump that causes Ca(2+) efflux from ER stores, increased cytosolic [Ca(2+)] and induced TF PCA. Consistent with these findings, anti-GRP78 autoantibodies that were isolated from the serum of patients with prostate cancer and bind to a specific N-terminal epitope (Leu(98)-Leu(115)) on cell surface GRP78, caused a dose-dependent increase in cytosolic [Ca(2+)] and enhanced TF PCA. The ability to interfere with cell surface GRP78 binding, block phospholipase C activity, sequester ER Ca(2+), or prevent plasma membrane phosphatidylserine exposure resulted in a significant decrease in the TF PCA induced by anti-GRP78 autoantibodies. Taken together, these findings provide evidence that engagement of the anti-GRP78 autoantibodies with cell surface GRP78 increases TF PCA through a mechanism that involves the release of Ca(2+) from ER stores. Furthermore, blocking GRP78 signaling on the surface of cancer cells attenuates TF PCA and has the potential to reduce the risk of cancer-related venous thromboembolism.


Assuntos
Anticorpos Antineoplásicos/imunologia , Autoanticorpos/imunologia , Cálcio/imunologia , Retículo Endoplasmático/imunologia , Proteínas de Choque Térmico/imunologia , Neoplasias da Próstata/imunologia , Tromboplastina/imunologia , Tromboembolia Venosa/imunologia , Anticorpos Antineoplásicos/metabolismo , Anticorpos Antineoplásicos/farmacologia , Autoanticorpos/metabolismo , Autoanticorpos/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/farmacologia , Epitopos/imunologia , Epitopos/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Fosfatidilserinas/imunologia , Fosfatidilserinas/metabolismo , Neoplasias da Próstata/complicações , Neoplasias da Próstata/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Tapsigargina/farmacologia , Tromboplastina/metabolismo , Fosfolipases Tipo C/imunologia , Fosfolipases Tipo C/metabolismo , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/metabolismo
6.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211673

RESUMO

Individuals harboring the loss-of-function (LOF) proprotein convertase subtilisin/kexin type 9 Gln152His variation (PCSK9Q152H) have low circulating low-density lipoprotein cholesterol levels and are therefore protected against cardiovascular disease (CVD). This uncleavable form of proPCSK9, however, is retained in the endoplasmic reticulum (ER) of liver hepatocytes, where it would be expected to contribute to ER storage disease (ERSD), a heritable condition known to cause systemic ER stress and liver injury. Here, we examined liver function in members of several French-Canadian families known to carry the PCSK9Q152H variation. We report that PCSK9Q152H carriers exhibited marked hypocholesterolemia and normal liver function despite their lifelong state of ER PCSK9 retention. Mechanistically, hepatic overexpression of PCSK9Q152H using adeno-associated viruses in male mice greatly increased the stability of key ER stress-response chaperones in liver hepatocytes and unexpectedly protected against ER stress and liver injury rather than inducing them. Our findings show that ER retention of PCSK9 not only reduced CVD risk in patients but may also protect against ERSD and other ER stress-driven conditions of the liver. In summary, we have uncovered a cochaperone function for PCSK9Q152H that explains its hepatoprotective effects and generated a translational mouse model for further mechanistic insights into this clinically relevant LOF PCSK9 variant.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Proteínas de Choque Térmico , Hepatopatias , Fígado , Mutação com Perda de Função , Pró-Proteína Convertase 9 , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
7.
Lab Invest ; 90(6): 953-62, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20212456

RESUMO

Tissue factor (TF) is the major physiological initiator of the coagulation cascade and has an important function in the morbidity and mortality associated with many disease states, including cancer-associated thrombosis and atherosclerosis. TF normally exists in a partially encrypted state and its de-encryption on circulating monocytes, platelets or endothelial cells by inflammatory mediators can lead to thrombosis. Furthermore, many cancer cells express large amounts of TF and these cells communicate readily with the circulation through the fenestrated tumor endothelium. To assess agents or conditions that modulate the encryption state of TF, we developed a continuous assay for the determination of TF procoagulant activity (PCA) in a cell-based system. We have shown the use of this assay at detecting agents that de-encrypt TF thereby leading to an increase in TF PCA in three cancer cell lines, namely, T24/83 bladder carcinoma cells and PC-3 and DU145 prostate cancer cells. Further, through use of this assay, we have shown that the endoplasmic reticulum calcium pump inhibitor, thapsigargin, stimulates the de-encryption of TF. The continuous assay for the determination of TF PCA proved to have inherently less intra- and inter-assay variability than the widely used discontinuous assay and is considerably less labor intensive. Further, the continuous assay produced progress curves that were compatible with curve fitting to allow for the determination of the nature of reaction as well as rate constants for the underlying enzymes, TF/FVIIa and FXa. The continuous assay for the assessment of TF PCA on intact cells is applicable for high-throughput screening to allow for the determination of compounds that modulate TF PCA.


Assuntos
Fenômenos Fisiológicos Celulares , Tromboplastina/metabolismo , Biomarcadores Tumorais/análise , Carcinoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Immunoblotting , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Tapsigargina/farmacologia , Tromboplastina/análise , Neoplasias da Bexiga Urinária/patologia
8.
Hypertension ; 73(2): 390-398, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580686

RESUMO

The heart manifests hypertrophic growth in response to elevation of afterload pressure. Cardiac myocyte growth involves new protein synthesis and membrane expansion, of which a number of cellular quality control machineries are stimulated to maintain function and homeostasis. The unfolded protein response is potently induced during cardiac hypertrophy to enhance protein-folding capacity and eliminate terminally misfolded proteins. However, whether the unfolded protein response directly regulates cardiac myocyte growth remains to be fully determined. Here, we show that GRP78 (glucose-regulated protein of 78 kDa)-an endoplasmic reticulum-resident chaperone and a critical unfolded protein response regulator-is induced by cardiac hypertrophy. Importantly, overexpression of GRP78 in cardiomyocytes is sufficient to potentiate hypertrophic stimulus-triggered growth. At the in vivo level, TG (transgenic) hearts overexpressing GRP78 mount elevated hypertrophic growth in response to pressure overload. We went further to show that GRP78 increases GATA4 (GATA-binding protein 4) level, which may stimulate Anf (atrial natriuretic factor) expression and promote cardiac hypertrophic growth. Silencing of GATA4 in cultured neonatal rat ventricular myocytes significantly diminishes GRP78-mediated growth response. Our results, therefore, reveal that protein-folding chaperone GRP78 may directly enhance cardiomyocyte growth by stimulating cardiac-specific transcriptional factor GATA4.


Assuntos
Fator de Transcrição GATA4/fisiologia , Proteínas de Choque Térmico/fisiologia , Miócitos Cardíacos/patologia , Animais , Chaperona BiP do Retículo Endoplasmático , Hipertrofia , Camundongos , Camundongos Endogâmicos C57BL , Dobramento de Proteína , Serina-Treonina Quinases TOR/fisiologia , Resposta a Proteínas não Dobradas
9.
JHEP Rep ; 1(6): 418-429, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32039393

RESUMO

The fatty acid translocase, also known as CD36, is a well-established scavenger receptor for fatty acid (FA) uptake and is abundantly expressed in many metabolically active tissues. In the liver, CD36 is known to contribute to the progression of non-alcoholic fatty liver disease and to the more severe non-alcoholic steatohepatitis, by promoting triglyceride accumulation and subsequent lipid-induced endoplasmic reticulum (ER) stress. Given the recent discovery that the hepatocyte-secreted proprotein convertase subtilisin/kexin type 9 (PCSK9) blocks CD36 expression, we sought to investigate the role of PCSK9 in liver fat accumulation and injury in response to saturated FAs and in a mouse model of diet-induced hepatic steatosis. METHODS: In this study, we investigated the role of PCSK9 on the uptake and accumulation of FAs, as well as FA-induced toxicity, in a variety of cultured hepatocytes. Diet-induced hepatic steatosis and liver injury were also assessed in Pcsk9 -/- mice. RESULTS: Our results indicate that PCSK9 deficiency in cultured hepatocytes increased the uptake and accumulation of saturated and unsaturated FAs. In the presence of saturated FAs, PCSK9 also protected cultured hepatocytes from ER stress and cytotoxicity. In line with these findings, a metabolic challenge using a high-fat diet caused severe hepatic steatosis, ER stress inflammation and fibrosis in the livers of Pcsk9 -/- mice compared to controls. Given that inhibition of CD36 ablated the observed accumulation of lipid in vitro and in vivo, our findings also highlight CD36 as a strong contributor to steatosis and liver injury in the context of PCSK9 deficiency. CONCLUSIONS: Collectively, our findings demonstrate that PCSK9 regulates hepatic triglyceride content in a manner dependent on CD36. In the presence of excess dietary fats, PCSK9 can also protect against hepatic steatosis and liver injury. LAY SUMMARY: The proprotein convertase subtilisin/kexin type 9 (PCSK9) is a circulating protein known to reduce the abundance of receptors on the surface of liver cells charged with the task of lipid uptake from the circulation. Although PCSK9 deficiency is known to cause lipid accumulation in mice and in cultured cells, the toxicological implications of this observation have not yet been reported. In this study, we demonstrate that PCSK9 can protect against cytotoxicity in cultured liver cells treated with a saturated fatty acid and we also show that Pcsk9 knockout mice develop increased liver injury in response to a high-fat diet.

10.
JCI Insight ; 3(24)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30568038

RESUMO

The 78-kDa glucose-regulated protein (GRP78) is an ER molecular chaperone that aids in protein folding and secretion. However, pathological conditions that cause ER stress can promote the relocalization of GRP78 to the cell surface (csGRP78), where it acts as a signaling receptor to promote cancer progression. csGRP78 also possesses antigenic properties, leading to the production of anti-GRP78 autoantibodies, which contribute to tumor growth. In contrast, the presence and role of anti-GRP78 autoantibodies in atherosclerosis is unknown. Here, we show that atherosclerotic-prone ApoE-/- mice develop circulating anti-GRP78 autoantibodies that bind to csGRP78 on lesion-resident endothelial cells. Moreover, GRP78-immunized ApoE-/- mice exhibit a marked increase in circulating anti-GRP78 autoantibody titers that correlated with accelerated lesion growth. Mechanistically, engagement of anti-GRP78 autoantibodies with csGRP78 on human endothelial cells activated NF-κB, thereby inducing the expression of ICAM-1 and VCAM-1, a process blocked by NF-κB inhibitors. Disrupting the autoantibody/csGRP78 complex with enoxaparin, a low-molecular-weight heparin, reduced the expression of adhesion molecules and attenuated lesion growth. In conclusion, anti-GRP78 autoantibodies play a crucial role in atherosclerosis development, and disruption of the interaction between anti-GRP78 autoantibodies and csGRP78 represents a therapeutic strategy.


Assuntos
Aterosclerose/metabolismo , Autoanticorpos/metabolismo , Células Endoteliais/metabolismo , Proteínas de Choque Térmico/metabolismo , Animais , Aterosclerose/patologia , Autoimunidade/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/genética , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Deficiências na Proteostase , RNA Mensageiro/metabolismo , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA