Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Protoc ; 7(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392683

RESUMO

Spinal muscular atrophy is a neuromuscular disorder caused by mutations in both copies of the survival motor neuron gene 1 (SMN1), which lead to reduction in the production of the SMN protein. Currently, there are several therapies that have been approved for SMA, with many more undergoing active research. While various biomarkers have been proposed for assessing the effectiveness of SMA treatment, a universally accepted one still has not been identified. This study aimed to describe a fast and reliable method using the number of gems in cell nuclei as a potential tool for assessment of splicing correction of oligonucleotide efficacy in SMA cells. To gain insight into whether the number of gems in cell nuclei varies based on their SMN genotype and whether the increase in gem number is associated with therapeutic response, we utilized fibroblast cell cultures obtained from a patient with SMA type II and from a healthy individual. We discovered a remarkable difference in the number of gems found in the nuclei of these cells, specifically when counting gems per 100 nuclei. The SMA fibroblasts treated with antisense oligonucleotide showed beneficial effects in correcting the abnormal splicing of SMN2 exon 7. It was observed that there was a significant increase in the number of gems in the treated cells compared to the intact SMA cells. The results obtained significantly correlate with an increase of full-length SMN transcript sharing. Based on our findings, we propose using the quantity of gems as a reliable biomarker for SMA drug development.

2.
Int J Neonatal Screen ; 10(1)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38390973

RESUMO

Spinal muscular atrophy 5q (SMA) is one of the most common neuromuscular inherited diseases and is the most common genetic cause of infant mortality. SMA is associated with homozygous deletion of exon 7 in the SMN1 gene. Recently developed drugs can improve the motor functions of infants with SMA when they are treated in the pre-symptomatic stage. With aim of providing an early diagnosis, newborn screening (NBS) for SMA using a real-time PCR assay with dried blood spots (DBS) was performed from January 2022 through November 2022 in Saint Petersburg, which is a representative Russian megapolis. Here, 36,140 newborns were screened by the GenomeX real-time PCR-based screening test, and three genotypes were identified: homozygous deletion carriers (4 newborns), heterozygous carriers (772 newborns), and wild-type individuals (35,364 newborns). The disease status of all four newborns that screened positive for the homozygous SMN1 deletion was confirmed by alternate methods. Two of the newborns had two copies of SMN2, and two of the newborns had three copies. We determined the incidence of spinal muscular atrophy in Saint Petersburg to be 1 in 9035 and the SMA carrier frequency to be 1 in 47. In conclusion, providing timely information regarding SMN1, confirmation of disease status, and SMN2 copy number as part of the SMA newborn-screening algorithm can significantly improve clinical follow-up, testing of family members, and treatment of patients with SMA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA