Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(1): 200-210, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118446

RESUMO

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.


Assuntos
Proteínas de Ligação ao GTP , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila melanogaster/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Drosophila/genética
2.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948005

RESUMO

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Assuntos
Mioquimia , Proteínas do Tecido Nervoso , Animais , Autoanticorpos , Axônios , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Genética Reversa
3.
Am J Hum Genet ; 108(1): 134-147, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33340455

RESUMO

The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones.


Assuntos
Epilepsia/genética , Hipotireoidismo/genética , Transtornos do Neurodesenvolvimento/genética , Receptores Notch/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Animais , Anus Imperfurado/genética , Caenorhabditis elegans/genética , Linhagem Celular , Displasia Ectodérmica/genética , Transtornos do Crescimento/genética , Células HEK293 , Perda Auditiva Neurossensorial/genética , Histonas/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Mutação/genética , Nariz/anormalidades , Pancreatopatias/genética , Complexo de Endopeptidases do Proteassoma/genética
4.
Clin Genet ; 105(6): 620-629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38356149

RESUMO

PPP1R21 encodes for a conserved protein that is involved in endosomal maturation. Biallelic pathogenic variants in PPP1R21 have been associated with a syndromic neurodevelopmental disorder from studying 13 affected individuals. In this report, we present 11 additional individuals from nine unrelated families and their clinical, radiological, and molecular findings. We identified eight different variants in PPP1R21, of which six were novel variants. Global developmental delay and hypotonia are neurological features that were observed in all individuals. There is also a similar pattern of dysmorphic features with coarse faces as a gestalt observed in several individuals. Common findings in 75% of individuals with available brain imaging include delays in myelination, wavy outline of the bodies of the lateral ventricles, and slight prominence of the bodies of the lateral ventricles. PPP1R21-related neurodevelopmental disorder is associated with a consistent phenotype and should be considered in highly consanguineous individuals presenting with developmental delay/intellectual disability along with coarse facial features.


Assuntos
Transtornos do Neurodesenvolvimento , Fenótipo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem
5.
J Inherit Metab Dis ; 47(2): 220-229, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38375550

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamylase (OTC) deficiencies are rare urea cycle disorders, which can lead to life-threatening hyperammonemia. Liver transplantation (LT) provides a cure and offers an alternative to medical treatment and life-long dietary restrictions with permanent impending risk of hyperammonemia. Nevertheless, in most patients, metabolic aberrations persist after LT, especially low plasma citrulline levels, with questionable clinical impact. So far, little is known about these alterations and there is no consensus, whether l-citrulline substitution after LT improves patients' symptoms and outcomes. In this multicentre, retrospective, observational study of 24 patients who underwent LT for CPS1 (n = 11) or OTC (n = 13) deficiency, 25% did not receive l-citrulline or arginine substitution. Correlation analysis revealed no correlation between substitution dosage and citrulline levels (CPS1, p = 0.8 and OTC, p = 1). Arginine levels after liver transplantation were normal after LT independent of citrulline substitution. Native liver survival had no impact on mental impairment (p = 0.67). Regression analysis showed no correlation between l-citrulline substitution and failure to thrive (p = 0.611) or neurological outcome (p = 0.701). Peak ammonia had a significant effect on mental impairment (p = 0.017). Peak plasma ammonia levels correlate with mental impairment after LT in CPS1 and OTC deficiency. Growth and intellectual impairment after LT are not significantly associated with l-citrulline substitution.


Assuntos
Hiperamonemia , Transplante de Fígado , Doença da Deficiência de Ornitina Carbomoiltransferase , Humanos , Doença da Deficiência de Ornitina Carbomoiltransferase/cirurgia , Hiperamonemia/tratamento farmacológico , Citrulina , Carbamoil-Fosfato/metabolismo , Carbamoil-Fosfato/uso terapêutico , Amônia/metabolismo , Estudos Retrospectivos , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Arginina/uso terapêutico , Ornitina Carbamoiltransferase
6.
Brain ; 146(12): 5031-5043, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517035

RESUMO

MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.


Assuntos
Catarata , Epilepsia Generalizada , Epilepsia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Epilepsia/genética , Cerebelo/patologia , Transtornos do Neurodesenvolvimento/genética , Epilepsia Generalizada/patologia , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/genética , Atrofia/patologia , Catarata/genética , Catarata/patologia , Fenótipo , Complexo Mediador/genética
7.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876776

RESUMO

Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.


Assuntos
Antígenos de Neoplasias/genética , Leucocitose/genética , Infecções por Mycobacterium não Tuberculosas/genética , Células A549 , Adolescente , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Criança , Grânulos Citoplasmáticos/metabolismo , Feminino , Células HEK293 , Células HeLa , Homozigoto , Humanos , Lactente , Interferon gama/metabolismo , Leucocitose/patologia , Masculino , Mutação , Infecções por Mycobacterium não Tuberculosas/patologia , Linhagem , Células THP-1 , Adulto Jovem
8.
Hum Genet ; 142(10): 1491-1498, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37656279

RESUMO

DBR1 encodes the only known human lariat debranching enzyme and its deficiency has been found to cause an autosomal recessive inborn error of immunity characterized by pediatric brainstem viral-induced encephalitis (MIM 619441). We describe a distinct allelic disorder caused by a founder recessive DBR1 variant in four families (DBR1(NM_016216.4):c.200A > G (p.Tyr67Cys)). Consistent features include prematurity, severe intrauterine growth deficiency, congenital ichthyosis-like presentation (collodion membrane, severe skin peeling and xerosis), and death before the first year of life. Patient-derived fibroblasts displayed the characteristic accumulation of intron lariats in their RNA as revealed by targeted and untargeted analysis, in addition to a marked reduction of DBR1 on immunoblot analysis. We propose a novel DBR1-related developmental disorder that is distinct from DBR1-related encephalitis susceptibility and highlight the apparent lack of correlation with the degree of DBR1 deficiency.


Assuntos
Encefalite , Ictiose , Criança , Humanos , Alelos , Causalidade , Fibroblastos , Ictiose/genética
9.
Am J Hum Genet ; 106(2): 246-255, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004447

RESUMO

Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms . Dysplasia of corpus callosum with focal thinning of the posterior part and characteristic facial features appeared to be unifying findings. RalGAPA1 was absent in the fibroblasts derived from two affected individuals suggesting a loss-of-function effect of the RALGAPA1 variants. Consequently, RalA activity was increased in these cell lines, which is in keeping with the idea that RalGAPA1 deficiency causes a constitutive activation of RalA. Additionally, levels of RalGAPB, a scaffolding subunit of the RalGAP complex, were dramatically reduced, indicating a dysfunctional RalGAP complex. Moreover, RalGAPA1 deficiency clearly increased cell-surface levels of lipid raft components in detached fibroblasts, which might indicate that anchorage-dependence of cell growth signaling is disturbed. Our findings indicate that the dysregulation of the RalA pathway has an important impact on neuronal function and brain development. In light of the partially overlapping phenotype between RALA- and RALGAPA1-associated diseases, it appears likely that dysregulation of the RalA signaling pathway leads to a distinct group of genetic syndromes that we suggest could be named RALopathies.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos/etiologia , Proteínas Ativadoras de GTPase/genética , Hipotonia Muscular/etiologia , Mutação , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/etiologia , Espasmos Infantis/etiologia , Alelos , Movimento Celular , Proliferação de Células , Pré-Escolar , Família , Transtornos da Alimentação e da Ingestão de Alimentos/patologia , Feminino , Humanos , Lactente , Masculino , Hipotonia Muscular/patologia , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Espasmos Infantis/patologia
10.
Bioinformatics ; 38(6): 1677-1684, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951628

RESUMO

MOTIVATION: Structural genomic variants account for much of human variability and are involved in several diseases. Structural variants are complex and may affect coding regions of multiple genes, or affect the functions of genomic regions in different ways from single nucleotide variants. Interpreting the phenotypic consequences of structural variants relies on information about gene functions, haploinsufficiency or triplosensitivity and other genomic features. Phenotype-based methods to identifying variants that are involved in genetic diseases combine molecular features with prior knowledge about the phenotypic consequences of altering gene functions. While phenotype-based methods have been applied successfully to single nucleotide variants as well as short insertions and deletions, the complexity of structural variants makes it more challenging to link them to phenotypes. Furthermore, structural variants can affect a large number of coding regions, and phenotype information may not be available for all of them. RESULTS: We developed DeepSVP, a computational method to prioritize structural variants involved in genetic diseases by combining genomic and gene functions information. We incorporate phenotypes linked to genes, functions of gene products, gene expression in individual cell types and anatomical sites of expression, and systematically relate them to their phenotypic consequences through ontologies and machine learning. DeepSVP significantly improves the success rate of finding causative variants in several benchmarks and can identify novel pathogenic structural variants in consanguineous families. AVAILABILITY AND IMPLEMENTATION: https://github.com/bio-ontology-research-group/DeepSVP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Humanos , Genótipo , Fenótipo , Genômica , Nucleotídeos
11.
Genet Med ; 25(8): 100885, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165955

RESUMO

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Deficiência Intelectual/genética , Fenótipo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genética
12.
Clin Genet ; 101(2): 247-254, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34708404

RESUMO

Biallelic changes in the ZNFX1 gene have been recently reported to cause severe familial immunodeficiency. Through a search of our bio/databank with information from genetic testing of >55 000 individuals, we identified nine additional patients from seven families with six novel homozygous ZNFX1 variants. Consistent with the previously described phenotype, our patients suffered from monocytosis, thrombocytopenia, hepatosplenomegaly, recurrent infections, and lymphadenopathy. The two most severely affected probands also had renal involvement and clinical presentations compatible with hemophagocytic lymphohistiocytosis. The disease was less lethal among our patients than previously reported. We identified two missense changes, two variants predicted to result in complete protein loss through nonsense-mediated decay, and two frameshift changes that likely introduce a truncation. Our findings (i) independently confirm the role of ZNFX1 in primary genetic immunodeficiency, (ii) expand the genetic and clinical spectrum of ZNFX1-related disease, and (iii) illustrate the utility of large, well-curated, and continually updated genotype-phenotype databases in resolving molecular diagnoses of patients with initially negative genetic testing findings.


Assuntos
Alelos , Antígenos de Neoplasias/genética , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/genética , Mutação , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/genética , Mapeamento Cromossômico , Biologia Computacional/métodos , Análise Mutacional de DNA , Bases de Dados Genéticas , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Humanos , Linhagem , Fenótipo
13.
Am J Med Genet A ; 188(1): 83-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515413

RESUMO

Secondary findings (SF) are defined as genetic conditions discovered unintentionally during an evaluation of raw data for another disease. We aimed to identify the rate of secondary genetic findings in the Saudi population in the 59 genes of the American College of Medical Genetics and Genomics (ACMG) list. In our study, the raw data of 1254 individuals, generated from exome sequencing for clinical purposes, were studied. Variants detected in the 59 genes on the ACMG list of secondary findings were investigated. Pathogenicity classifications were assigned to those variants based on the ACMG scoring system. We identified 2409 variants in the 59 gene list, 45 variants were classified as pathogenic/likely pathogenic variants according to the ACMG classification. The LDLR gene had the greatest number of pathogenic/likely pathogenic variants 12%. Cardiovascular genetic diseases had the highest frequency of disorders detected as secondary findings. In this study, the overall rate of positive cases identified with secondary findings in the Saudi population was 8%. The different in our current study and the previous studies in Saudi Arabia can be explained by the differences between the sequencing method, the criteria used for variant classification, the availability of newer evidence at the time of the publication, and the fact that we identified Saudi novel variants never reported in other populations.


Assuntos
Variação Genética , Genômica , Exoma/genética , Testes Genéticos , Humanos , Arábia Saudita/epidemiologia , Sequenciamento do Exoma
14.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875846

RESUMO

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Assuntos
Exoma , Deficiência Intelectual , Sequência de Bases , Exoma/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso , Fenótipo , Sequenciamento do Exoma
15.
Ann Hum Genet ; 84(5): 370-379, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32401353

RESUMO

BACKGROUND: Familial Mediterranean fever is a hereditary inflammatory disorder caused by variants in MEFV. c.2230G>T p.(Ala744Ser) rs61732874 is considered to be an established pathogenic variant in MEFV, but in this study we provide a complete evaluation that suggests this variant is likely benign. METHODS: Using an in-house exome database from 924 individuals, we extracted all individuals harboring this variant for clinical, laboratory, and familial evaluation. RESULTS: We identified the variant in 58 individuals from 39 families. The allele frequency of this variant in our database is 4.2%. None of the identified individuals match the diagnosis of Familial Mediterranean Fever. Using the American College of Medical Genetics and Genomics guidelines for variant classification, this variant is classified as likely benign and not pathogenic. CONCLUSION: Conflicting evidence about variants creates challenges for testing laboratories and impacts patient care. Sharing information drawn mainly from underrepresented populations and clinical phenotyping are important tools for precise curation of genetic variants.


Assuntos
Febre Familiar do Mediterrâneo/genética , Frequência do Gene , Pirina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Exoma , Feminino , Genética Populacional , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Arábia Saudita , Adulto Jovem
16.
Ann Hum Genet ; 84(6): 431-436, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32533790

RESUMO

INTRODUCTION: Currently, next-generation sequencing (NGS) technology is more accessible and available to detect the genetic causation of diseases. Though NGS technology benefited some clinical phenotypes, for some clinical diagnoses such as seizures and epileptic disorders, adaptation occurred slowly. The genetic diagnosis was mainly based on epilepsy gene panels and not on whole exome and/or genome sequencing. METHOD: We retrospectively analyzed 420 index cases, referred for NGS over a period of 18 months, to investigate the challenges in diagnosing epilepsy. RESULT: Of the 420 cases, 65 (15%) were referred due to epilepsy with one third having a positive family history. The result of the NGS was 14 positive cases (21.5%), 16 inconclusive cases (24%), and 35 (53%) negative cases. No gene has been detected twice in the inconclusive and positive groups. Comparative genomic hybridization has been performed for all 30 NGS negative cases and four cases with pathogenic variants (deletion in 15q11.213.1, deletion of 2p16.3, deletion in Xq22.1, and deletion in 17p13.3) were identified. CONCLUSION: These findings have implications for our understanding of the approach to genetic testing and counseling of patients affected with seizures and epilepsy disorders. The overall diagnostic yield of exome/genome sequencing in our cohort was 23%. The main characteristic is genetic heterogeneity, supporting NGS technology as a suitable testing approach for seizures and epilepsy disorders. Genetic counseling for newly identified disease-causing variants depends on the pedigree interpretation, within the context of disease penetrance and variable expressivity.


Assuntos
Aconselhamento/métodos , Epilepsia/genética , Epilepsia/patologia , Heterogeneidade Genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Epilepsia/classificação , Epilepsia/psicologia , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Estudos Retrospectivos , Análise de Sequência de DNA/métodos
17.
BMC Pulm Med ; 20(1): 141, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414360

RESUMO

BACKGROUND: Primary Ciliary Dyskinesia (PCD) is also known as immotile-cilia syndrome, an autosomal recessive disorder of ciliary function, leading to mucus retention in the respiratory system in childhood. Our knowledge in the pathophysiological aspect of this devastating disorder is increasing with the advancement of genetic and molecular testing. CASE PRESENTATION: Here in, we report two siblings with a classical clinical and radiological presentation of PCD. Using whole exome sequencing we identified a homozygous truncating variant (c.3402 T > A); p.(Tyr1134*) in the NEK10 gene. Western bolt analysis revealed a decrease in the expression of NEK10 protein in the patient cells. CONCLUSIONS: NEK10 plays a central role in the post-mitotic process of cilia assembly, regulating ciliary length and functions during physiological and pathological status. This study highlights the challenges of identifying disease-causing variants for a highly heterogeneous disorder and reports on the identification of a novel variant in NEK10 which recently associated with PCD.


Assuntos
Transtornos da Motilidade Ciliar/genética , Quinases Relacionadas a NIMA/genética , Pré-Escolar , Feminino , Homozigoto , Humanos , Mutação , Irmãos
18.
Neurogenetics ; 20(2): 109-115, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972502

RESUMO

Intellectual disability poses a huge burden on the health care system, and it is one of the most common referral reasons to the genetic and child neurology clinic. Intellectual disability (ID) is genetically heterogeneous, and it is associated with several other neurological conditions. Exome sequencing is a robust genetic tool and has revolutionized the process of molecular diagnosis and novel gene discovery. Besides its diagnostic clinical value, novel gene discovery is prime in reverse genetics, when human mutations help to understand the function of a gene and may aid in better understanding of the human brain and nervous system. Using WES, we identified a biallelic truncating variant in DNAJA1 gene (c.511C>T p.(Gln171*) in a multiplex Saudi consanguineous family. The main phenotype shared between the siblings was intellectual disability and seizure disorder.


Assuntos
Alelos , Epilepsia/genética , Variação Genética , Proteínas de Choque Térmico HSP40/genética , Deficiência Intelectual/genética , Adolescente , Adulto , Criança , Consanguinidade , Exoma , Feminino , Humanos , Masculino , Chaperonas Moleculares/metabolismo , Mutação , Linhagem , Fenótipo , Arábia Saudita , Sequenciamento do Exoma , Adulto Jovem
19.
Ann Neurol ; 83(2): 433-436, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29360170

RESUMO

Neural tube defects (NTDs) are among the most common birth defects in humans and yet their molecular etiology remains poorly understood. NTDs are believed to result from the complex interaction of environmental factors with a multitude of genetic risk factors in a classical multifactorial disease model. Mendelian forms of NTDs in which single variants are sufficient to cause the disease are extremely rare. We report a monozygotic twin with severe NTDs (occipital encephalocele and myelomeningocele) and a shared de novo, likely truncating, variant in SMARCC1. RTPCR analysis suggests the potential null nature of the variant attributed to nonsense-mediated decay. SMARCC1 is extremely constrained in humans and encodes a highly conserved core chromatin remodeler, BAF155. Mice that are heterozygous for a null allele or homozygous for a hypomorphic allele develop severe NTDs in the form of exencephaly. This is the first report of SMARCC1 mutation in humans, and it shows a critical and conserved requirement for intact BAF chromatin remodeling complex in neurulation. Ann Neurol 2018;83:433-436.


Assuntos
Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Fatores de Transcrição/genética , Gêmeos Monozigóticos/genética , Feminino , Humanos , Lactente , Mutação
20.
BMC Pediatr ; 19(1): 195, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196016

RESUMO

INTRODUCTION: Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive inborn errors of metabolism characterized by hyperammonemia due to N-acetylglutamate synthase (NAGS) dysfunction. Carglumic acid (Carbaglu®; Orphan Europe Ltd.) is approved by the US Food and Drug Administration (USFDA) for the treatment of hyperammonemia due hepatic NAGS deficiency. Here we report the rationale and design of a phase IIIb trial that is aimed at determining the long-term efficacy and safety of carglumic acid in the management of PA and MMA. METHODS: This prospective, multicenter, open-label, randomized, parallel group phase IIIb study will be conducted in Saudi Arabia. Patients with PA or MMA (≤15 years of age) will be randomized 1:1 to receive twice daily carglumic acid (50 mg/kg/day) plus standard therapy (protein-restricted diet, L-carnitine, and metronidazole) or standard therapy alone for a 2-year treatment period. The primary efficacy outcome is the number of emergency room visits due to hyperammonemia. Safety will be assessed throughout the study and during the 1 month follow-up period after the study. DISCUSSION: Current guidelines recommend conservative medical treatment as the main strategy for the management of PA and MMA. Although retrospective studies have suggested that long-term carglumic acid may be beneficial in the management of PA and MMA, current literature lacks evidence for this indication. This clinical trial will determine the long-term safety and efficacy of carglumic acid in the management of PA and MMA. TRIAL REGISTRATION: King Abdullah International Medical Research Center ( KAIMRC ): (RC13/116) 09/1/2014. Saudi Food and Drug Authority (SFDA) (33066) 08/14/2014. ClinicalTrials.gov (identifier: NCT02426775) 04/22/2015.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Ensaios Clínicos Fase III como Assunto , Glutamatos/uso terapêutico , Acidemia Propiônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Adolescente , Carnitina/uso terapêutico , Criança , Dieta com Restrição de Proteínas , Esquema de Medicação , Término Precoce de Ensaios Clínicos , Glutamatos/efeitos adversos , Humanos , Metronidazol/uso terapêutico , Estudos Multicêntricos como Assunto , Acidemia Propiônica/terapia , Estudos Prospectivos , Tamanho da Amostra , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA