RESUMO
Owing to limited self-healing capacity, tendon ruptures and healing remain major orthopedic challenges. Increasing evidence suggests that post-traumatic inflammatory responses, and hence, cytokines are involved in both cases, and also in tendon exercise and homeostasis. This review summarizes interrelations known between the cytokines interleukin (IL)-1ß, tumor necrosis factor (TNF)α, IL-6 and vascular endothelial growth factor (VEGF) in tendon to assess their role in tendon damage and healing. Exogenic cytokine sources are blood-derived leukocytes that immigrate in damaged tendon. Endogenous expression of IL-1ß, TNFα, IL-6, IL-10 and VEGF was demonstrated in tendon-derived cells. As tendon is a highly mechanosensitive tissue, cytokine homeostasis and cell survival underlie an intimate balance between adequate biomechanical stimuli and disturbance through load deprivation and overload. Multiple interrelations between cytokines and tendon extracellular matrix (ECM) synthesis, catabolic mediators e.g. matrix-degrading enzymes, inflammatory and angiogenic factors (COX-2, PGE2, VEGF, NO) and cytoskeleton assembly are evident. Pro-inflammatory cytokines affect ECM homeostasis, accelerate remodeling, amplify biomechanical adaptiveness and promote tenocyte apoptosis. This multifaceted interplay might both contribute to and interfere with healing. Much work must be undertaken to understand the particular interrelation of these inflammatory and regulatory mediators in ruptured tendon and healing, which has relevance for the development of novel immunoregulatory therapeutic strategies.