Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 104, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34001126

RESUMO

BACKGROUND: The ability to regenerate body parts is a feature of metazoan organisms and the focus of intense research aiming to understand its basis. A number of mechanisms involved in regeneration, such as proliferation and tissue remodeling, affect whole tissues; however, little is known on how distinctively different constituent cell types respond to the dynamics of regenerating tissues. Preliminary studies suggest that a number of organisms alter neuronal numbers to scale with changes in body size. In some species with the ability of whole-body axis regeneration, it has additionally been observed that regenerates are smaller than their pre-amputated parent, but maintain the correct morphological proportionality, suggesting that scaling of tissue and neuronal numbers also occurs. However, the cell dynamics and responses of neuronal subtypes during nervous system regeneration, scaling, and whole-body axis regeneration are not well understood in any system. The cnidarian sea anemone Nematostella vectensis is capable of whole-body axis regeneration, with a number of observations suggesting the ability to alter its size in response to changes in feeding. We took advantage of Nematostella's transparent and "simple" body plan and the NvLWamide-like mCherry fluorescent reporter transgenic line to probe the response of neuron populations to variations in body size in vivo in adult animals during body scaling and regeneration. RESULTS: We utilized the previously characterized NvLWamide-like::mCherry transgenic reporter line to determine the in vivo response of neuronal subtypes during growth, degrowth, and regeneration. Nematostella alters its size in response to caloric intake, and the nervous system responds by altering neuronal number to scale as the animal changes in size. Neuronal numbers in both the endodermal and ectodermal nerve nets decreased as animals shrunk, increased as they grew, and these changes were reversible. Whole-body axis regeneration resulted in regenerates that were smaller than their pre-amputated size, and the regenerated nerve nets were reduced in neuronal number. Different neuronal subtypes had distinct responses during regeneration, including consistent, not consistent, and conditional increases in number. Conditional responses were regulated, in part, by the size of the remnant fragment and the position of the amputation site. Regenerates and adults with reduced nerve nets displayed normal behaviors, indicating that the nerve net retains functionality as it scales. CONCLUSION: These data suggest that the Nematostella nerve net is dynamic, capable of scaling with changes in body size, and that neuronal subtypes display differential regenerative responses, which we propose may be linked to the scale state of the regenerating animals.


Assuntos
Anêmonas-do-Mar , Animais , Animais Geneticamente Modificados , Ectoderma , Rede Nervosa , Neurônios , Anêmonas-do-Mar/genética
2.
J Am Mosq Control Assoc ; 31(1): 113-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25843187

RESUMO

Although it is widely accepted that black fly larvae employ filter feeding as their primary mode of nutrient intake, other forms of food acquisition, such as predation, may be more prevalent than previously realized. It has been suggested that environments where particulate matter is low, such as high-elevation seasonal streams, may drive predatory behavior in black fly larvae. Relatively little is known about the frequency at which larvae prey on other organisms or if predation may be obligate in some species. In order to supplement the idea that larval black fly predation may be a common method of feeding under certain conditions, a preliminary survey of predation by Prosimulium larvae was conducted in order to assess predation frequency at high-elevation sites (> 3,200 m) in the Colorado Rocky Mountains. Larvae were sampled from alpine and subalpine locations, and their gut content analysis revealed evidence of facultative predation and possible cannibalism. Evidence of predation was observed in all but 1 Prosimulium species collected. Predation frequency was highest in the North Fork Snake River headwater location, a small tributary stream of the Snake River in central Colorado. This survey suggests that further inquiry into predatory behavior of black fly larvae should be conducted to determine the mechanisms, behavior, and ecological impact of this understudied feeding strategy.


Assuntos
Comportamento Predatório , Rios , Simuliidae/fisiologia , Animais , Colorado , Lagos , Larva/fisiologia , Simuliidae/crescimento & desenvolvimento
3.
R Soc Open Sci ; 10(6): 230152, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325595

RESUMO

Cnidarians exhibit incredible reproductive diversity, with most capable of sexual and asexual reproduction. Here, we investigate factors that influence asexual reproduction in the burrowing sea anemone Nematostella vectensis, which can propagate asexually by transverse fission of the body column. By altering culture conditions, we demonstrate that the presence of a burrowing substrate strongly promotes transverse fission. In addition, we show that animal size does not affect fission rates, and that the plane of fission is fixed along the oral-aboral axis of the polyp. Homeobox transcription factors and components of the TGFß, Notch, and FGF signalling pathways are differentially expressed in polyps undergoing physal pinching suggesting they are important regulators of transverse fission. Gene ontology analyses further suggest that during transverse fission the cell cycle is suppressed, and that cell adhesion and patterning mechanisms are downregulated to promote separation of the body column. Finally, we demonstrate that the rate of asexual reproduction is sensitive to population density. Collectively, these experiments provide a foundation for mechanistic studies of asexual reproduction in Nematostella, with implications for understanding the reproductive and regenerative biology of other cnidarian species.

4.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747872

RESUMO

Cnidarians exhibit incredible reproductive diversity, with most capable of sexual and asexual reproduction. Here we investigate factors that influence asexual reproduction in the burrowing sea anemone Nematostella vectensis , which can propagate asexually by transverse fission of the body column. By altering culture conditions, we demonstrate that the presence of a burrowing substrate strongly promotes transverse fission. In addition, we show that animal size does not affect fission rates, and that the plane of fission is fixed along the oral-aboral axis of the polyp. Homeobox transcription factors and components of the TGFß, Notch, and FGF signaling pathways are differentially expressed in polyps undergoing physal pinching suggesting they are important regulators of transverse fission. Gene ontology analyses further suggest that during transverse fission the cell cycle is suppressed and that cell adhesion and patterning mechanisms are downregulated to promote separation of the body column. Finally, we demonstrate that the rate of asexual reproduction is sensitive to population density. Collectively, these experiments provide a foundation for mechanistic studies of asexual reproduction in Nematostella , with implications for understanding the reproductive and regenerative biology of other cnidarian species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA