RESUMO
Bacillus thuringiensis subsp. israelensis (Bti) spherical parasporal crystal contains several insecticidal proteins used as environmentally safe alternative to toxic chemical pesticides. The exploration of a Bti strain isolated from Qatar QBT220 genes encoding the δ-endotoxins responsible of the insecticidal activities revealed the alteration of a 14-kb DNA region including the δ-endotoxins cry10A and cyt1C genes of pBtoxis plasmid. The presence of all the insecticidal genes except cry10A and cyt1C was explained by a structural instability of the plasmid pBtoxis. However, when compared with the Bti reference strains H14 and QBT217 that carry all δ-endotoxins coding genes, it was found that QBT220, has a significantly higher insecticidal activity against the dipteran insect Aedes aegypti larvae despite of the plasmid pBtoxis structural instability due to the alteration of cry10A and cyt1C genes. In addition, QBT220 showed the highest δ-endotoxin synthesis per spore, compared with that of the wildtype strains. These findings confirm that the altered genes cry10A and cyt1C are not mandatory for Bti insecticidal activities and on the other hand show a possible inhibitory effect played by the 2 proteins Cry10A and Cyt1C on the insecticidal activities of the other insecticidal proteins. In addition, the QBT220 increased δ-endotoxins synthesis per cell, makes this strain a good candidate for possible applications in the industrial production of bioinsecticides.
RESUMO
Qatar and other Gulf States have a diverse range of marine vegetation that is adapted to the stressful environmental conditions of seawater. The industrial wastewater produced by oil and gas activities adds further detrimental conditions for marine aquatic photosynthetic organisms on the Qatari coastlines. Thus, these organisms experience severe stress from both seawater and industrial wastewater. This review discusses the biodiversity in seawater around Qatar, as well as remediation methods and metabolic pathways to reduce the negative impacts of heavy metals and petroleum hydrocarbons produced during these activities. The role of microorganisms that are adjacent to or associated with these aquatic marine organisms is discussed. Exudates that are released by plant roots enhance the role of microorganisms to degrade organic pollutants and immobilize heavy metals. Seaweeds may have other roles such as biosorption and nutrient uptake of extra essential elements to avoid or reduce eutrophication in marine environments. Special attention is paid to mangrove forests and their roles in remediating shores polluted by industrial wastewater. Seagrasses (Halodule uninervis, Halophila ovalis, and Thalassia hemprichii) can be used as promising candidates for phytoremediation or bioindicators for pollution status. Some genera among seaweeds that have proven efficient in accumulating the most common heavy metals found in gas activities and biodegradation of petroleum hydrocarbons are discussed.
RESUMO
Living in diverse environmentally harsh conditions, the plant exhibits a unique survival mechanism. As a result, the endophytes residing within the plant produce specific compounds that promote the plant's growth and defend it against pathogens. Plants and algae symbiotically harbor endophytes, i.e., microbes and microorganisms living within them. The objective of this study is to isolate endophytic fungi, specifically strains of Aspergillus terreus, from the leaves of the salt-tolerant plant Tetraena qatarensis and to explore the salt tolerance, antagonistic activity, and growth promotion properties. Strain C A. terreus (ON117337.1) was screened for salt tolerance and antagonistic effects. Regarding salt tolerance, the isolate demonstrated the ability to thrive in a concentration of up to 10% NaCl. A. terreus showed inhibitory activity against four fungal phytopathogens, namely Fusarium oxysporum, Alternaria alternata, Colletotrichum gloeosporioides, and Botrytis cinerea. The GC-MS investigation of the fungal (strain C Aspergillus terreus) extract showed the presence of about 66 compounds (secondary metabolites). Secondary metabolites (SMs) are produced, like Hexadecanoic acid, which aids in controlling phytopathogens. Also produced is lovastatin, which is used to treat hypercholesterolemia. Strain C, which showed salinity tolerance and the highest inhibitory activity, was further analyzed for its effect on tomato seed germination under pathogen stress from Fusarium oxysporum. The greenhouse experiment indicated that the fungi increased the length of tomato seedlings and the plant biomass. Therefore, the selected endophytes derived from Tetraena qatarensis were scrutinized for their potential as biocontrol agents, aiming to thwart fungal pathogens and stimulate plant growth. The in vitro and in vivo assessments of strain C (Aspergillus terreus) against Fusarium oxysporum in this investigation indicate the promising role of endophytes as effective biological control agents. Investigating novel bio-products offers a sustainable approach to agriculture, gradually reducing dependence on chemical fungicides.
RESUMO
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Assuntos
Metagenômica , Microbiologia do Solo , Solo , Solo/química , Clima Desértico , MicrobiotaRESUMO
Ochratoxin A (OTA) is a toxic fungal metabolite produced by some Aspergillus and Penicillium species. This work was designed to explore the presence of OTA and ochratoxigenic fungi in feed grains marketed in Qatar and their biological control by a bacterium (Burkholderia cepacia). Significantly higher levels of OTA were detected in mixed grains samples (144.59 ± 6.63 µg/kg), compared to the maize (25.27 ± 1.89 µg/kg) and wheat (3.37 ± 0.11 µg/kg). OTA-producing fungi (A. niger, A. ochraceus, A. westerdijkiae, A. carbonarius and P. verrucosum) were identified on the basis of their morphological features as well as through polymerase chain reaction (PCR). Putative ochratoxigenic polyketide genes in these isolates were evidenced by using primers AoOTA-L/AoOTA-R (in A. ochraceus and A. westerdijkiae), AoPks1/AoPks2 (in A. niger and A. ochraceus) and PenPks1/Penpks2 (in P. verrucosum). On synthetic media, A. westerdijkiae showed the highest OTA synthesis (5913 ± 576 µg/kg) than the closely related A. ochraceus (3520 ± 303 µg/kg), A. carbonarius (3064 ± 289 µg/kg) and P. verrucosum (3030 ± 710 µg/kg). Burkholderia cepacia cells and culture extract showed promising biological control potentials against OTA producing fungi. On the basis of these findings, it can be concluded that animal feed samples are generally contaminated with OTA-producing fungi as well as OTA, and Burkholderia cepacia CS5 exhibits promising antifungal activities.
RESUMO
Many halophytes are considered to be salt hyperaccumulators, adopting ion extrusion and inclusion mechanisms. Such plants, with high aboveground biomass, may play crucial roles in saline habitats, including soil desalination and phytoremediation of polluted soils and waters. These plants cause significant changes in some of the soil's physical and chemical properties; and have proven efficient in removing heavy metals and metabolizing organic compounds from oil and gas activities. Halophytes in Qatar, such as Halopeplis perfoliata, Salicornia europaea, Salsola soda, and Tetraena qatarensis, are shown here to play significant roles in the phytoremediation of polluted soils and waters. Microorganisms associated with these halophytes (such as endophytic bacteria) might boost these plants to remediate saline and polluted soils. A significant number of these bacteria, such as Bacillus spp. and Pseudomonas spp., are reported here to play important roles in many sectors of life. We explore the mechanisms adopted by the endophytic bacteria to promote and support these halophytes in the desalination of saline soils and phytoremediation of polluted soils. The possible roles played by endophytes in different parts of native plants are given to elucidate the mechanisms of cooperation between these native plants and the associated microorganisms.
RESUMO
Fungal infections in cereals lead to huge economic losses in the food and agriculture industries. This study was designed to investigate the occurrence of toxigenic fungi and their mycotoxins in marketed cereals and explore the effect of the antagonistic yeast Cyberlindnera jadinii volatiles against key toxigenic fungal strains. Aspergillus spp. were the most frequent contaminating fungi in the cereals, with an isolation frequency (Fr) of 100% in maize, followed by wheat (88.23%), rice (78.57%) and oats (14.28%). Morphological and molecular identification confirmed the presence of key toxigenic fungal strains in cereal samples, including A. carbonarius, A. flavus, A. niger, A. ochraceus and A. parasiticus. Aflatoxins (AFs) were detected in all types of tested cereal samples, with a significantly higher level in maize compared to wheat, rice, oats and breakfast cereals. Ochratoxin A (OTA) was only detected in wheat, rice and maize samples. Levels of mycotoxins in cereals were within EU permissible limits. The volatiles of Cyberlindnera jadinii significantly inhibited the growth of A. parasiticus, A. niger and P. verrucosum. The findings of this study confirm the presence of toxigenic fungi and mycotoxins in cereals within the EU permissible limits and the significant biocontrol ability of Cyberlindnera jadinii against these toxigenic fungi.
Assuntos
Micotoxinas , Ocratoxinas , Grão Comestível/química , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Fungos/genética , Micotoxinas/análise , Ocratoxinas/análise , Poaceae , Saccharomyces cerevisiae , Triticum/microbiologia , Zea mays/microbiologiaRESUMO
Camel milk has been considered as an important source of nutrients and is commercialized in many countries of the world including the Middle East. This study aimed to investigate the presence of mycotoxins in camel feed and milk samples in comparison with the cow milk. Fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEN) were detected in 14%, 39%, and 39% of the tested camel feed samples, respectively. Among the tested camel feed samples, 8.3% and 5.6% were co-contaminated with OTA+FUM and FUM+ZEN, respectively. In the case of milk samples, 46.15% of camel and 63.63% of cow were found contaminated with aflatoxin M1 (AFM1). In total, 16.2% and 8.1% of the milk samples were simultaneously contaminated with two and three mycotoxins, respectively. Although the levels of individual mycotoxins in the camel feed and milk samples were within the European Union (EU) permissible limits, their co-occurrence may pose severe risk to human and animal health due to possible additive and/or synergistic toxicities.
RESUMO
Fungal infection and synthesis of mycotoxins in coffee leads to significant economic losses. This study aimed to investigate the prevalence of toxigenic fungi, their metabolites, and the effect of traditional roasting and brewing on ochratoxin A (OTA) and aflatoxins (AFs) contents of naturally contaminated coffee samples. In addition, in vivo biocontrol assays were performed to explore the antagonistic activities of Bacillus simplex 350-3 (BS350-3) on the growth and mycotoxins synthesis of Aspergillus ochraceus and A. flavus. The relative density of A. niger, A. flavus, Penicillium verrucosum and A. carbonarius on green coffee bean was 60.82%, 7.21%, 3.09% and 1.03%, respectively. OTA contents were lowest in green coffee beans (2.15 µg/kg), followed by roasted (2.76 µg/kg) and soluble coffee (8.95 µg/kg). Likewise, AFs levels were highest in soluble coffee (90.58 µg/kg) followed by roasted (33.61 µg/kg) and green coffee (9.07 µg/kg). Roasting naturally contaminated coffee beans at three traditional methods; low, medium and high, followed by brewing resulted in reduction of 58.74% (3.50 µg/kg), 60.88% (3.72 µg/kg) and 64.70% (4.11 µg/kg) in OTA and 40.18% (34.65 µg/kg), 47.86% (41.17 µg/kg) and 62.38% (53.73 µg/kg) AFs contents, respectively. Significant inhibitions of AFs and OTA synthesis by A. flavus and A. carbonarius, respectively, on infected coffee beans were observed in presence of Bacillus simplex BS350-3 volatiles. Gas chromatography mass spectrochemistry (GC-MS/MS) analysis of head-space BS350-3 volatiles showed quinoline, benzenemethanamine and 1-Octadecene as bioactive antifungal molecules. These findings suggest that marketed coffee samples are generally contaminated with OTA and AFs, with a significant level of roasted and soluble coffee contaminated above EU permissible limits for OTA. Further, along with coffee roasting and brewing; microbial volatiles can be optimized to minimize the dietary exposure to mycotoxins.
Assuntos
Coffea/microbiologia , Microbiota , Alcenos/metabolismo , Aspergillus/metabolismo , Aspergillus/patogenicidade , Bacillus/metabolismo , Bacillus/patogenicidade , Benzilaminas/metabolismo , Coffea/metabolismo , Micotoxinas/metabolismo , Penicillium/metabolismo , Penicillium/patogenicidade , Quinolinas/metabolismo , Sementes/microbiologiaRESUMO
The study of 257 crystal-producing Bacillus thuringiensis isolates from bioinsecticide free soil samples collected from different sites in Tunisia, was performed by PCR amplification, using six primer pairs specific for cry1, cry2, cry3, cry4, and vip3A genes, by the investigation of strain plasmid pattern, crystal morphology and delta-endotoxin content and by the assessment of insecticidal activities against the lepidopteran insect Ephestia kuehniella. Based on plasmid pattern study, 11 representative strains of the different classes were subjected to morphological and molecular analyses. The comparison of the PFGE fingerprints confirmed the heterogeneity of these strains. B. thuringiensis kurstaki strains, harbouring at the same time the genes cry1A, cry2, cry1Ia, and vip3A, were the most abundant (65.4%). 33.34% of the new isolates showed particular delta-endotoxin profiles but no PCR products with the used primer sets. B. thuringiensis israelensis was shown to be also very rare among the Tunisian B. thuringiensis isolates diversity. These findings could have considerable impacts for the set up of new pest control biological agents.
Assuntos
Bacillus thuringiensis/isolamento & purificação , Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Lepidópteros/microbiologia , Lepidópteros/fisiologia , Microbiologia do Solo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Plasmídeos/análise , Análise de Sobrevida , TunísiaRESUMO
Bacillus thuringiensis (Bt) is a Gram-positive soil bacterium that has been recognized as an effective bioinsecticide active against plant, animal and human pathogenic and disease vector insects. During its sporulation phase, Bt produces crystals consisting of δ-endotoxins, which upon ingestion kill specifically insect larvae. Bt subsp. israelensis (Bti) is very active against dipteran insects. Bti based bioinsecticides are considered as a sustainable solution to control the Dipteran insects responsible of plant, animal and human diseases. In this study, Bti strains isolated from Qatar soil were analyzed for their insecticidal activities against the dipteran insect Aedes aegypti Bora Bora (Culicidae, Diptera) and for their δ-endotoxins yields per cell. Among the local Bti strains, four exceptional strains producing spherical crystals, were found to be more insecticidal than the reference strain Bti H14. When tested for their δ-endotoxin yield, the Bti QBT217 strain, producing typical spherical crystals and having the best insecticidal activity, was recognized as the best candidate strain for potential bioinsecticide production and biological control of dipteran insects, particularly the disease vector insect A. aegypti.
RESUMO
To overcome the economic losses associated with fungi and their toxic metabolites, environmentally safe and efficient approaches are needed. To this end, biological control using yeasts and safe bacterial strains and their products are being explored to replace synthetic fungicides. In the present study, the biocontrol effect of a yeast strain of Kluyveromyces marxianus, QKM-4, against the growth and mycotoxin synthesis potential of key toxigenic fungi was evaluated. In vitro assays were performed to find the application of yeast volatile organic compounds (VOCs) against fungal contamination on important agricultural commodities. The removal of ochratoxin A (OTA) and deoxynivalenol (DON) by living and heat-inactivated yeast cells was also explored. VOCs produced by strain QKM-4 were able to significantly limit the fungal growth of 17 fungal species belonging to genera Aspergillus, Penicillium, and Fusarium. Yeast VOCs were able to reduce OTA biosynthesis potential of Penicillium verrucosum and Aspergillus carbonarius by 99.6 and 98.7%, respectively. In vivo application of QKM-4 VOCs against Fusarium oxysporum and A. carbonarius infection on tomatoes and grapes, respectively, determined a complete inhibition of fungal spore germination. GC/MS-based analysis of yeast VOCs identified long-chain alkanes, including nonadecane, eicosane, docosane, heptacosane, hexatriacontane, and tetracosane. In vitro testing of the mycotoxin-binding potential of the living and heat-inactivated QKM-4 cells showed a reduction of OTA and DON up to 58 and 49%, respectively, from artificially contaminated buffers. Our findings clearly demonstrate the strong antifungal potential of K. marxianus QKM-4 and propose this strain as a strong candidate for application in agriculture to safeguard food and feed products.
RESUMO
This research was conducted to investigate the dynamics of airborne fungi using viable culture collection and in respect to different abiotic variables, including seasonal and intra-diurnal variations. A gravimetric method was used to sample airborne fungal deposition on potato dextrose agar plates on alternate days, for a year between April 2015 to March 2016. From 176 settle plate exposures, a total of 1197 mould and 283 yeast colony-forming units (CFU), 21 genera and 62 species were retrieved. The highest fungal spore count was recorded in February 2016, whereas the lowest count occurred in August 2015. The main constituents of the fungal airspora were attributed to Cladosporium (60.2%), Aspergillus (10.4%), Fusarium (9.4%), Alternaria (8.5%), and Ganoderma spp. (2.3%). Temperature was negatively correlated with total colony count (r = -0.231, p ≤ 0.05) or species richness (r = -0.267, p ≤ 0.001), while wind speed was positively correlated with total colony count (r = 0.484, p ≤ 0.001) or species richness (r = 0.257, p ≤ -0.001). The highest dispersal of fungal spores was obtained at 18:00, whereas the lowest fungal spores release was recorded at 00:00 (midnight). There were no significant differences in species composition and richness of the airborne fungal population between two study sites, the Industrial area and Qatar University Campus. The count of Alternaria spp. and Fusarium spp. were significantly higher at the Industrial area site, which corresponds to a higher CO2 level than the Qatar University site. This study lays the foundation for future work to assess the implications of such aeromycological data on public health.
Assuntos
Microbiologia do Ar , Poluentes Atmosféricos , Monitoramento Ambiental , Fungos/crescimento & desenvolvimento , Poluentes Atmosféricos/análise , Contagem de Colônia Microbiana , Fungos/classificação , Fungos/isolamento & purificação , Catar , Estações do Ano , Esporos FúngicosRESUMO
BACKGROUND AND AIM: Post-harvest fungal infection of fruits and vegetables is mainly caused by fungal pathogens that can be harmful to both human and animals as they produce mycotoxins, post-harvest diseases in fruits and vegetables are a serious problem that results in the loss of a large percentage of crops reaching 50% in some fruits. This study aims at screening the post-purchasing shelf-life of four highly consumed fruits and vegetables and at identifying the fungal strains behind their spoilage in Qatar. MATERIALS AND METHODS: Fruits and vegetables were collected from the market to study their post-purchasing shelf-life and to identify the fungal types involved in samples rotting. Factors that affect samples' shelf-life were also analyzed. RESULTS: A total of 73 fungal isolates were isolated and identified, with the highest percentage of Penicillium (21.9%) followed by Rhizopus (17.8%). Interestingly, many mycotoxins producing and diseases inducing fungi were identified in this study; this includes Rhizopus, Aspergillus, Penicillium, Alternaria, Fusarium, Cladosporium, Botrytis, Geotrichum, and Colletotrichum. Statistical analysis shows that different fruits have significantly different shelf-life and different predispositions for spoilage. In many cases, a strong relationship was shown between the fungal types isolated and the country of origin of the fruit. Finally, the price of the commodity did not have a significant effect on its contamination level nor did the market from which the sample was purchased. This indicates that the fruit displaying methods in Qatar do not affect their contamination level. CONCLUSION: The study is among the first reports about fungal types involved in fruits and vegetables rotting in Qatar and it highlights the strong link between spoiling fungi and their country of origin.
RESUMO
Mycotoxins are secondary metabolites produced by certain filamentous fungi, causing human and animal health issues upon the ingestion of contaminated food and feed. Among the safest approaches to the control of mycotoxigenic fungi and mycotoxin detoxification is the application of microbial biocontrol agents. Burkholderiacepacia is known for producing metabolites active against a broad number of pathogenic fungi. In this study, the antifungal potential of a Qatari strain of Burkholderia cepacia (QBC03) was explored. QBC03 exhibited antifungal activity against a wide range of mycotoxigenic, as well as phytopathogenic, fungal genera and species. The QBC03 culture supernatant significantly inhibited the growth of Aspergillus carbonarius, Fusarium culmorum and Penicillium verrucosum in PDA medium, as well as A. carbonarius and P. verrucosum biomass in PDB medium. The QBC03 culture supernatant was found to dramatically reduce the synthesis of ochratoxin A (OTA) by A. carbonarius, in addition to inducing mycelia malformation. The antifungal activity of QBC03's culture extract was retained following thermal treatment at 100 °C for 30 min. The findings of the present study advocate that QBC03 is a suitable biocontrol agent against toxigenic fungi, due to the inhibitory activity of its thermostable metabolites.
Assuntos
Aspergillus/metabolismo , Agentes de Controle Biológico , Burkholderia cepacia , Fusarium/metabolismo , Ocratoxinas/metabolismo , Penicillium/metabolismo , CatarRESUMO
The present study was designed to investigate the antagonistic activity of Bacillus licheniformis BL350-2 against mycotoxigenic strains of Aspergillus and Penicillium. In vitro coincubation for 5 days indicated Aspergillus westerdijkiae BA1 as the most sensitive strain, with a growth inhibition of 62%, followed by A. carbonarius MG7 (60%), Penicillium verrucosum MC12 (53%), A. niger MC05 (50%), A. flavus CM5 (49%), A. parasiticus SB01 (47%), and A. ochraceus MD1 (44%). Likewise, the majority of the tested strains on exposure to bacterial volatiles showed complete inhibition of mycotoxin synthesis. In vivo assays on maize ears resulted in 88% reduction in A. flavus CM5 growth and complete inhibition of fungal sporulation and aflatoxin accumulation. The GC-MS-based volatile profile showed 3-methyl-1-butanol as the most abundant compound. The findings of the present study advocate that B. licheniformis BL350-2 is suitable as a biocontrol agent against mycotoxigenic fungi, at least during storage of cereal grains.
RESUMO
Compared with conventional synthetic flocculants, bioflocculants has special advantages such as safety, strong effect, biodegradable and harmlessness to humans and the environment, so they may potentially be applied in drinking and wastewater treatment, downstream processing, and fermentation processes. To utilize bioflocculants widely in industrial fields, it is desirable to find various microorganisms with high bioflocculant-producing ability and improve the flocculating efficiency of the bioflocculant. In the present study, screening of new flocculant-producing microorganisms was carried out using samples collected from different Qatari ecosystems. The flocculating activity of the novel bioflocculants produced by isolated microorganisms was investigated. A total of 5 g/l Kaolin suspension was used to measure the flocculating activity. Isolated bioflocculant-producing bacteria were identified by 16S rDNA analysis, using PCR with universal primers. Comparative analysis of the 16S rDNA sequence (approximately 550 bp) in the GenBank database revealed that these bacteria are related to the genus Bacillus. FT-IR spectrometry analysis of the extracted bioflocculants indicated the presence of carboxyl, hydroxyl and amino groups preferred for the flocculation process. Influences of pH and bioflocculant dosage on the flocculation were also examined. The maximum flocculating rates were observed at pH 7, 7 and 3 of the bioflocculants derived from strains QUST2, QUST6 and QUST9, respectively. However, 20.0 mg/l was the dose that gave the highest flocculating rate with all examined bioflocculants. The elemental analysis of examined bioflocculants revealed the mass proportion of C, H, N and S. Carbon and nitrogen contents of examined bioflocculants were in the range of 42-48% and 11-12%, respectively.
Assuntos
Bactérias/metabolismo , Ecossistema , Floculação , Concentração de Íons de Hidrogênio , CatarRESUMO
Cyt1A protein is a cytolytic protein encoded by the cyt gene of Bacillus thuringiensis subsp. israelensis (Bti) as part of the parasporal crystal proteins produced during the sporulation. Cyt1A protein is unique compared to the other endotoxins present in these parasporal crystals. Unlike δ-endotoxins, Cyt1A protein does not require receptors to bind to the target cell and activate the toxicity. It has the ability to affect a broad range of cell types and organisms, due to this characteristic. Cyt1A has been recognized to not only target the insect cells directly, but also recruit other endotoxins by acting as receptors. Due to these mode of actions, Cyt1A has been studied for its cytolytic activity against human cancer cell lines, although not extensively. In this study, we report a novel Cyt1A protein produced by a Bti strain QBT229 isolated from Qatar. When tested for its cytotoxicity against lung cancer cells, this local strain showed considerably higher activity compared to that of the reference Bti and other strains tested. The possible reasons for such enhanced activity were explored at the gene and protein levels. It was evidenced that five consecutive amino acid replacements in the ß8 sheet of the Cyt1A protein enhanced the cytotoxicity against the lung epithelial cancer cells. Such novel Cyt1A protein with high cytotoxicity against lung cancer cells has been characterized and reported through this study.
Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Endotoxinas/genética , Endotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Toxinas de Bacillus thuringiensis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pulmão/citologiaRESUMO
Mycotoxins are important contaminants of food and feed. In this study, low fermenting yeast (Lachancea thermotolerans) and its derivatives were applied against toxigenic fungi and their mycotoxins. A. parasiticus, P. verrucosum and F. graminearum and their mycotoxins were exposed to yeast volatile organic compounds (VOCs) and cells, respectively. VOCs reduced significantly the fungal growth (up to 48%) and the sporulation and mycotoxin synthesis (up to 96%). Very interestingly, it was shown that even 7 yeast colonies reduced Fusarium’s growth and the synthesis of its mycotoxin, deoxynivalenol (DON). Moreover, decreasing yeast nutrient concentrations did not affect the inhibition of fungal growth, but reduced DON synthesis. In addition, inactivated yeast cells were able to remove up to 82% of the ochratoxin A (OTA). As an application of these findings, the potentialities of the VOCs to protect tomatoes inoculated with F. oxysporum was explored and showed that while in the presence of VOCs, no growth was observed of F. oxysporum on the inoculated surface areas of tomatoes, in the absence of VOCs, F. oxysporum infection reached up to 76% of the tomatoes’ surface areas. These results demonstrate that the application of yeasts and their derivatives in the agriculture and food industry might be considered as a very promising and safe biocontrol approach for food contamination.
Assuntos
Agentes de Controle Biológico , Contaminação de Alimentos/prevenção & controle , Fungos/fisiologia , Micotoxinas/fisiologia , Compostos Orgânicos VoláteisRESUMO
Bacillus thuringiensis (Bt) based insecticidal formulations have been recognized as one of the most successful, environmentally safe and sustainable method of controlling insect pests. Research teams worldwide are in search of Bt diversity giving more choices of bio-insecticides and alternatives to address insect resistance. In fact, there are many unexplored ecologies that could harbor novel Bt strains. This study is the first initiative to explore Bt strain diversity in Qatar. A collection of 700 Bt isolates was constructed. Scanning electron microscopy of Bt crystals showed different crystal forms, with a high abundance of spherical crystals compared to the bipyramidal ones. Among the spherical crystals, four different morphologies were observed. The δ-endotoxin content of parasporal crystals from each Bt isolate revealed that there are 16 different protein profiles among the isolates of the collection. On the other hand, plasmid pattern analysis showed seven different plasmid profiles. Their insecticidal activity was predicted by exploring the δ-endotoxin coding genes and conducting qualitative insecticidal bioassays. 19 smooth spherical crystal producing isolates have been identified that could be possible candidates for endotoxin production targeting Dipteran insects. Another group of 259 isolates producing bipyramidal and cuboidal crystals could target Lepidopteran and Coleopteran insects. The remaining 422 isolates have novel profiles. In conclusion, Qatari soil ecology provides a good collection and diversity of Bt isolates. In addition to strains harboring genes encoding common endotoxins, the majority are different and very promising for the search of novel insecticidal endotoxins.