RESUMO
MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.
RESUMO
Piperine is an alkaloid, but its therapeutic efficacy is limited due to poor aqueous solubility. In this study, piperine nanoemulsions were prepared using oleic acid (oil), Cremophore EL (surfactant), and Tween 80 (co-surfactant) using the high-energy ultrasonication approach. The optimal nanoemulsion (N2) was further evaluated using transmission electron microscopy, release, permeation, antibacterial, and cell viability studies based on minimal droplet size and maximum encapsulation efficiency. The prepared nanoemulsions (N1-N6) showed a transmittance of more than 95%, a mean droplet size between 105 ± 4.11 and 250 ± 7.4 nm, a polydispersity index of 0.19 to 0.36, and a ζ potential of -19 to -39 mV. The optimized nanoemulsion (N2) showed significantly improved drug release and permeation compared with pure piperine dispersion. The nanoemulsions were stable in the tested media. The transmission electron microscopy image showed a spherical and dispersed nanoemulsion droplet. The antibacterial and cell line results of piperine nanoemulsions were significantly better than the pure piperine dispersion. The findings suggested that piperine nanoemulsions may be a more advanced nanodrug delivery system than conventional ones.