Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31402, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807869

RESUMO

Brain cancers are some of the most complex diseases to treat, despite the numerous advances science has made in cancer chemotherapy and research. One of the key obstacles to identifying potential cures for this disease is the difficulty in emulating the complexity of the brain and the surrounding microenvironment to understand potential therapeutic approaches. This paper discusses some of the most important in vitro, in vivo, and microfluidic brain tumor models that aim to address these challenges.

2.
Sci Rep ; 13(1): 16644, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789072

RESUMO

Liposomes are the most successful nanoparticles used to date to load and deliver chemotherapeutic agents to cancer cells. They are nano-sized vesicles made up of phospholipids, and targeting moieties can be added to their surfaces for the active targeting of specific tumors. Furthermore, Ultrasound can be used to trigger the release of the loaded drugs by disturbing their phospholipid bilayer structure. In this study, we have prepared pegylated liposomes using four types of phospholipids with similar saturated hydrocarbon tails including a phospholipid with no head group attached to the phosphate head (DPPA) and three other phospholipids with different head groups attached to their phosphate heads (DPPC, DPPE and DPPG). The prepared liposomes were conjugated to the monoclonal antibody trastuzumab (TRA) to target the human epidermal growth factor receptor 2 (HER2) overexpressed on HER2-positive cancer cells (HER2+). We have compared the response of the different formulations of liposomes when triggered with low-frequency ultrasound (LFUS) and their cellular uptake by the cancer cells. The results showed that the different formulations had similar size, polydispersity, and stability. TRA-conjugated DPPC liposomes showed the highest sensitivity to LFUS. On the other hand, incubating the cancer cells with TRA-conjugated DPPA liposomes triggered with LFUS showed the highest uptake of the loaded calcein by the HER2+ cells.


Assuntos
Lipossomos , Fosfolipídeos , Humanos , Lipossomos/química , Liberação Controlada de Fármacos , Trastuzumab/farmacologia , Fosfatos , Sistemas de Liberação de Medicamentos
3.
Artif Cells Nanomed Biotechnol ; 50(1): 111-120, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35543613

RESUMO

Targeted liposomes enable the delivery of encapsulated chemotherapeutics to tumours by targeting specific receptors overexpressed on the surfaces of cancer cells; this helps in reducing the systemic side effects associated with the cytotoxic agents. Upon reaching the targeted site, these liposomes can be triggered to release their payloads using internal or external triggers. In this study, we investigate the use of low-frequency ultrasound as an external modality to trigger the release of a model drug (calcein) from non-targeted and targeted pegylated liposomes modified with cyclic arginine-glycine-aspartate (cRGD). Liposomes were exposed to sonication at 20-kHz using three different power densities (6.2, 9, and 10 mW/cm2). Our results showed that increasing the power density increased calcein release from the sonicated liposomes. Moreover, cRGD conjugation to the surface of the liposomes rendered cRGD-liposomes more susceptible to ultrasound compared to the non-targeted liposomes. cRGD conjugation was also found to increase cellular uptake of calcein by human colorectal carcinoma (HCT116) cells which were further enhanced following sonicating the cells with low-frequency ultrasound (LFUS).


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Sistemas de Liberação de Medicamentos/métodos , Células HCT116 , Humanos , Sonicação
4.
Polymers (Basel) ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267759

RESUMO

A number of promising nano-sized particles (nanoparticles) have been developed to conquer the limitations of conventional chemotherapy. One of the most promising methods is stimuli-responsive nanoparticles because they enable the safe delivery of the drugs while controlling their release at the tumor sites. Different intrinsic and extrinsic stimuli can be used to trigger drug release such as temperature, redox, ultrasound, magnetic field, and pH. The intracellular pH of solid tumors is maintained below the extracellular pH. Thus, pH-sensitive nanoparticles are highly efficient in delivering drugs to tumors compared to conventional nanoparticles. This review provides a survey of the different strategies used to develop pH-sensitive nanoparticles used in cancer therapy.

5.
Pharmaceutics ; 13(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959354

RESUMO

Quantum dots (QDs) are a promising tool to detect and monitor tumors. However, their small size allows them to accumulate in large quantities inside the healthy cells (in addition to the tumor cells), which increases their toxicity. In this study, we synthesized stealth liposomes encapsulating hydrophilic graphene quantum dots and triggered their release with ultrasound with the goal of developing a safer and well-controlled modality to deliver fluorescent markers to tumors. Our results confirmed the successful encapsulation of the QDs inside the core of the liposomes and showed no effect on the size or stability of the prepared liposomes. Our results also showed that low-frequency ultrasound is an effective method to release QDs encapsulated inside the liposomes in a spatially and temporally controlled manner to ensure the effective delivery of QDs to tumors while reducing their systemic toxicity.

6.
ACS Pharmacol Transl Sci ; 4(2): 589-612, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860189

RESUMO

The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors. They are small enough to extravasate into solid tumors, where they slowly release their therapeutic load by passive leakage or biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH, and temperature) or externally (light, magnetic field, and ultrasound) applied stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuli-responsive nanocarriers and their application in cancer treatment with a particular focus on ultrasound.

7.
Sci Rep ; 11(1): 11589, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078930

RESUMO

Targeted liposomes are designed to target specific receptors overexpressed on the surfaces of cancer cells. This technique ensures site-specific drug delivery to reduce undesirable side effects while enhancing the efficiency of the encapsulated therapeutics. Upon reaching the tumor site, these liposomes can be triggered to release their content in a controlled manner using ultrasound (US). In this study, drug release from pegylated calcein-loaded liposomes modified with transferrin (Tf) and triggered with US was evaluated. Low-frequency ultrasound at 20-kHz using three different power densities (6.2 mW/cm2, 9 mW/cm2 and 10 mW/cm2) was found to increase calcein release. In addition, transferrin-conjugated pegylated liposomes (Tf-PEG liposomes) were found to be more sonosensitive compared to the non-targeted (control) liposomes. Calcein uptake by HeLa cells was found to be significantly higher with the Tf-PEG liposomes compared to the non-targeted control liposomes. This uptake was further enhanced following the exposure to low-frequency ultrasound (at 35 kHz). These findings show that targeted liposomes triggered with US have promising potential as a safe and effective drug delivery platform.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos , Sonicação , Transferrina/química , Células HeLa , Humanos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA