Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 227(7): 901-906, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36611269

RESUMO

Influenza-associated pulmonary aspergillosis (IAPA) is a feared complication in patients with influenza tracheobronchitis, especially those receiving corticosteroids. Herein, we established a novel IAPA mouse model with low-inoculum Aspergillus infection and compared outcomes in mice with and without cortisone acetate (CA) immunosuppression. CA was an independent predictor of increased morbidity/mortality in mice with IAPA. Early antifungal treatment with liposomal amphotericin B was pivotal to improve IAPA outcomes in CA-immunosuppressed mice, even after prior antiviral therapy with oseltamivir. In summary, our model recapitulates key clinical features of IAPA and provides a robust preclinical platform to study the pathogenesis and treatment of IAPA.


Assuntos
Aspergilose , Influenza Humana , Aspergilose Pulmonar , Animais , Camundongos , Humanos , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , Aspergilose Pulmonar/complicações , Aspergilose Pulmonar/tratamento farmacológico , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Corticosteroides/uso terapêutico , Aspergillus fumigatus
2.
Med Mycol ; 59(1): 102-105, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32678869

RESUMO

Vasopressors are frequently given in hemodynamically unstable patients with severe Candida sepsis. While catecholamines can aggravate sepsis-induced immune dysfunction and modulate bacterial virulence traits, their impact on fungal pathogenicity is poorly understood. Using IncuCyte time-lapse microscopy and a fruit fly candidiasis model, we studied growth rates, morphogenesis, stress tolerance, and virulence of C. albicans cocultured with epinephrine and norepinephrine. We found that pharmacologically attainable catecholamine serum concentrations caused minimal changes to in vitro growth kinetics, filamentation, and fungal resistance to thermal or oxidative stress. Similarly, exposure of C. albicans to catecholamines did not alter the survival of infected flies.


Assuntos
Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Candidíase/tratamento farmacológico , Epinefrina/sangue , Epinefrina/farmacologia , Norepinefrina/sangue , Norepinefrina/farmacologia , Virulência/efeitos dos fármacos , Crescimento/efeitos dos fármacos , Humanos , Morfogênese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
3.
J Infect Dis ; 222(6): 989-994, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32432714

RESUMO

Pharmacological immune checkpoint blockade has revolutionized oncological therapies, and its remarkable success has sparked interest in expanding checkpoint inhibitor therapy in infectious diseases. Herein, we evaluated the efficacy of programmed cell death protein 1 (PD-1) blockade in a murine invasive pulmonary aspergillosis model. We found that, compared with isotype-treated infected control mice, anti-PD-1-treated mice had improved survival, reduced fungal burden, increased lung concentrations of proinflammatory cytokines and neutrophil-attracting chemokines, and enhanced pulmonary leukocyte accumulation. Furthermore, combined treatment with anti-PD-1 and caspofungin resulted in a significant survival benefit compared with caspofungin or anti-PD-1 therapy alone, indicating a synergistic effect between PD-1 inhibitors and immunomodulatory antifungal agents.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Caspofungina/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Aspergilose Pulmonar Invasiva/metabolismo , Aspergilose Pulmonar Invasiva/microbiologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Imuno-Histoquímica , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Receptor de Morte Celular Programada 1/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-30455245

RESUMO

Breakthrough mucormycosis in patients receiving isavuconazole prophylaxis or therapy has been reported. We compared the impact of isavuconazole and voriconazole exposure on the virulence of clinical isolates of Aspergillus fumigatus and different Mucorales species in a Drosophila melanogaster infection model. In contrast to A. fumigatus, a hypervirulent phenotype was found in all tested Mucorales upon preexposure to either voriconazole or isavuconazole. These findings may contribute to the explanation of breakthrough mucormycosis in isavuconazole-treated patients.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/patogenicidade , Mucorales/patogenicidade , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Animais , Aspergillus fumigatus/efeitos dos fármacos , Drosophila melanogaster , Feminino , Mucorales/efeitos dos fármacos , Rhizopus/efeitos dos fármacos , Rhizopus/patogenicidade , Virulência
5.
J Antimicrob Chemother ; 74(7): 1904-1910, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225606

RESUMO

OBJECTIVES: Candida auris is an emerging, often MDR, yeast pathogen. Efficient animal models are needed to study its pathogenicity and treatment. Therefore, we developed a C. auris fruit fly infection model. METHODS: TollI-RXA/Tollr632 female flies were infected with 10 different C. auris strains from the CDC Antimicrobial Resistance bank panel. We used three clinical Candida albicans strains as controls. For drug protection assays, fly survival was assessed along with measurement of fungal burden (cfu/g tissue) and histopathology in C. auris-infected flies fed with fluconazole- or posaconazole-containing food. RESULTS: Despite slower in vitro growth, all 10 C. auris isolates caused significantly greater mortality than C. albicans in infected flies, with >80% of C. auris-infected flies dying by day 7 post-infection (versus 67% with C. albicans, P < 0.001-0.005). Comparison of C. auris isolates from different geographical clades revealed more rapid in vitro growth of South American isolates and greater virulence in infected flies, whereas the aggregative capacity of C. auris strains had minimal impact on their growth and pathogenicity. Survival protection and decreased fungal burden of fluconazole- or posaconazole-fed flies infected with two C. auris strains were in line with the isolates' disparate in vitro azole susceptibility. High reproducibility of survival curves for both non-treated and antifungal-treated infected flies was seen, with coefficients of variation of 0.00-0.31 for 7 day mortality. CONCLUSIONS: Toll-deficient flies could provide a fast, reliable and inexpensive model to study pathogenesis and drug activity in C. auris candidiasis.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida/efeitos dos fármacos , Candida/patogenicidade , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Animais , Animais Geneticamente Modificados , Biópsia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Candidíase/patologia , Modelos Animais de Doenças , Drosophila melanogaster , Testes de Sensibilidade Microbiana , Virulência
6.
J Mater Sci Mater Med ; 29(5): 70, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752591

RESUMO

While antibiotic-eluting polymethylmethacrylate space maintainers have shown efficacy in the treatment of bacterial periprosthetic joint infection and osteomyelitis, antifungal-eluting space maintainers are associated with greater limitations for treatment of fungal musculoskeletal infections including limited elution concentration and duration. In this study, we have designed a porous econazole-eluting space maintainer capable of greater inhibition of fungal growth than traditional solid space maintainers. The eluted econazole demonstrated bioactivity in a concentration-dependent manner against the most common species responsible for fungal periprosthetic joint infection as well as staphylococci. Lastly, these porous space maintainers retain compressive mechanical properties appropriate to maintain space before definitive repair of the joint or bony defect.


Assuntos
Antifúngicos/química , Materiais Biocompatíveis , Econazol/química , Micoses/tratamento farmacológico , Infecções Relacionadas à Prótese/tratamento farmacológico , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Econazol/farmacologia , Teste de Materiais , Polimetil Metacrilato , Porosidade , Staphylococcus aureus/efeitos dos fármacos
7.
Clin Infect Dis ; 65(2): 216-225, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379304

RESUMO

BACKGROUND: Azole-resistant aspergillosis in high-risk patients with hematological malignancy or hematopoietic stem cell transplantation (HSCT) is a cause of concern. METHODS: We examined changes over time in triazole minimum inhibitory concentrations (MICs) of 290 sequential Aspergillus isolates recovered from respiratory sources during 1999-2002 (before introduction of the Aspergillus-potent triazoles voriconazole and posaconazole) and 2003-2015 at MD Anderson Cancer Center. We also tested for polymorphisms in ergosterol biosynthetic genes (cyp51A, erg3C, erg1) in the 37 Aspergillus fumigatus isolates isolated from both periods that had non-wild-type (WT) MICs. For the 107 patients with hematologic cancer and/or HSCT with invasive pulmonary aspergillosis, we correlated in vitro susceptibility with 42-day mortality. RESULTS: Non-WT MICs were found in 37 (13%) isolates and was only low level (MIC <8 mg/L) in all isolates. Higher-triazole MICs were more frequent in the second period and were Aspergillus-species specific, and only encountered in A. fumigatus. No polymorphisms in cyp51A, erg3C, erg1 genes were identified. There was no correlation between in vitro MICs with 42-day mortality in patients with invasive pulmonary aspergillosis, irrespective of antifungal treatment. Asian race (odds ratio [OR], 20.9; 95% confidence interval [CI], 2.5-173.5; P = .005) and azole exposure in the prior 3 months (OR, 9.6; 95% CI, 1.9-48.5; P = .006) were associated with azole resistance. CONCLUSIONS: Non-WT azole MICs in Aspergillus are increasing and this is associated with prior azole exposure in patients with hematologic cancer or HSCT. However, no correlation of MIC with outcome of aspergillosis was found in our patient cohort.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Aspergilose Pulmonar Invasiva/microbiologia , Atenção Terciária à Saúde , Triazóis/farmacologia , Adulto , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus/genética , Aspergillus/isolamento & purificação , Aspergillus fumigatus/efeitos dos fármacos , Estudos de Coortes , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Feminino , Proteínas Fúngicas/genética , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/microbiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/mortalidade , Masculino , Testes de Sensibilidade Microbiana , Polimorfismo Genético , Estudos Prospectivos , Resultado do Tratamento , Triazóis/uso terapêutico , Voriconazol/farmacologia , Voriconazol/uso terapêutico , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-27993850

RESUMO

Systemic candidiasis is a leading cause of nosocomial bloodstream infection with a high mortality rate despite treatment. Immune-based strategies are needed to improve outcomes. We previously reported that genetic deficiency in the chemokine receptor CCR1 improves survival and ameliorates tissue damage in Candida-infected mice. Here, we found that treatment of immunocompetent Candida-infected mice with the CCR1-selective antagonist BL5923 improves survival, decreases the kidney fungal burden, and protects from renal tissue injury.


Assuntos
Injúria Renal Aguda/prevenção & controle , Candida albicans/efeitos dos fármacos , Candidíase Invasiva/tratamento farmacológico , Hemorragia/prevenção & controle , Piperazinas/farmacologia , Receptores CCR1/antagonistas & inibidores , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/microbiologia , Injúria Renal Aguda/mortalidade , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase Invasiva/imunologia , Candidíase Invasiva/microbiologia , Candidíase Invasiva/mortalidade , Esquema de Medicação , Feminino , Expressão Gênica , Hemorragia/imunologia , Hemorragia/microbiologia , Hemorragia/mortalidade , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR1/genética , Receptores CCR1/imunologia , Análise de Sobrevida
9.
J Antimicrob Chemother ; 72(8): 2263-2272, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475687

RESUMO

Objectives: Over the last 30 years, the number of invasive fungal infections among immunosuppressed patients has increased significantly, while the number of effective systemic antifungal drugs remains low. The aim of this study was to identify and characterize antifungal compounds that inhibit fungus-specific metabolic pathways not conserved in humans. Methods: We screened a diverse compound library for antifungal activity in the pathogenic mould Aspergillus fumigatus . We determined the in vitro activity of bromoquinol by MIC determination against a panel of fungi, bacteria and cell lines. The mode of action of bromoquinol was determined by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring genes and by RNAseq analysis in A. fumigatus . In vivo efficacy was tested in Galleria mellonella and murine models of A. fumigatus infection. Results: Screening of a diverse chemical library identified three compounds interfering with fungal iron utilization. The most potent, bromoquinol, shows potent wide-spectrum antifungal activity that was blocked in the presence of exogenous iron. Mode-of-action analysis revealed that overexpression of the dba secondary metabolite cluster gene dbaD , encoding a metabolite transporter, confers bromoquinol resistance in A. nidulans , possibly by efflux. RNAseq analysis and subsequent experimental validation revealed that bromoquinol induces oxidative stress and apoptosis in A. fumigatus . Bromoquinol significantly reduced mortality rates of G. mellonella infected with A. fumigatus , but was ineffective in a murine model of infection. Conclusions: Bromoquinol is a promising antifungal candidate with a unique mode of action. Its activity is potentiated by iron starvation, as occurs during in vivo growth.


Assuntos
Antifúngicos/farmacologia , Apoptose , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus nidulans/efeitos dos fármacos , Estresse Oxidativo , Quinolinas/farmacologia , Animais , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Modelos Animais de Doenças , Lepidópteros , Testes de Sensibilidade Microbiana , Análise de Sobrevida
10.
Proc Natl Acad Sci U S A ; 111(29): 10660-5, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002471

RESUMO

Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated "D-CAR") upon binding with carbohydrate in the cell wall of Aspergillus germlings. T cells genetically modified with the Sleeping Beauty system to express D-CAR stably were propagated selectively on artificial activating and propagating cells using an approach similar to that approved by the Food and Drug Administration for manufacturing CD19-specific CAR(+) T cells for clinical trials. The D-CAR(+) T cells exhibited specificity for ß-glucan which led to damage and inhibition of hyphal growth of Aspergillus in vitro and in vivo. Treatment of D-CAR(+) T cells with steroids did not compromise antifungal activity significantly. These data support the targeting of carbohydrate antigens by CAR(+) T cells and provide a clinically appealing strategy to enhance immunity for opportunistic fungal infections using T-cell gene therapy.


Assuntos
Aspergilose/imunologia , Aspergilose/terapia , Bioengenharia/métodos , Carboidratos/antagonistas & inibidores , Infecções Oportunistas/imunologia , Infecções Oportunistas/terapia , Linfócitos T/imunologia , Animais , Antígenos CD19/metabolismo , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus/efeitos dos fármacos , Aspergillus/fisiologia , Dexametasona/farmacologia , Humanos , Hifas/efeitos dos fármacos , Hifas/fisiologia , Imunofenotipagem , Lectinas Tipo C/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Infecções Oportunistas/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos
11.
J Infect Dis ; 214(1): 114-21, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984141

RESUMO

BACKGROUND: Mucormycosis is a destructive invasive mold infection afflicting patients with diabetes and hematologic malignancies. Patients with diabetes are often treated with statins, which have been shown to have antifungal properties. We sought to examine the effects of statins on Rhizopus oryzae, a common cause of mucormycosis. METHODS: Clinical strains of R. oryzae were exposed to lovastatin, atorvastatin, and simvastatin and the minimum inhibitory concentrations (MICs) were determined. R. oryzae germination, DNA fragmentation, susceptibility to oxidative stress, and ability to damage endothelial cells were assessed. We further investigated the impact of exposure to lovastatin on the virulence of R. oryzae RESULTS: All statins had MICs of >64 µg/mL against R. oryzae Exposure of R. oryzae to statins decreased germling formation, induced DNA fragmentation, and attenuated damage to endothelial cells independently of the expression of GRP78 and CotH. Additionally, R. oryzae exposed to lovastatin showed macroscopic loss of melanin, yielded increased susceptibility to the oxidative agent peroxide, and had attenuated virulence in both fly and mouse models of mucormycosis. CONCLUSIONS: Exposure of R. oryzae to statins at concentrations below their MICs decreased virulence both in vitro and in vivo. Further investigation is warranted into the use of statins as adjunctive therapy in mucormycosis.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Mucormicose/tratamento farmacológico , Rhizopus/efeitos dos fármacos , Virulência/efeitos dos fármacos , Animais , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Dípteros/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Esporos Fúngicos/efeitos dos fármacos , Texas
12.
J Antimicrob Chemother ; 71(4): 946-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26747101

RESUMO

OBJECTIVES: During recent decades, the number of invasive fungal infections among immunosuppressed patients has increased significantly, whereas the number of effective systemic antifungal drugs remains low and unsatisfactory. The aim of this study was to characterize a novel antifungal compound, CW-8/haemofungin, which we previously identified in a screen for compounds affecting fungal cell wall integrity. METHODS: The in vitro characteristics of haemofungin were investigated by MIC evaluation against a panel of pathogenic and non-pathogenic fungi, bacteria and mammalian cells in culture. Haemofungin mode-of-action studies were performed by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring plasmids and biochemical validation of the target. In vivo efficacy was tested in the Galleria mellonella and Drosophila melanogaster insect models of infection. RESULTS: We demonstrate that haemofungin causes swelling and lysis of growing fungal cells. It inhibits the growth of pathogenic Aspergillus, Candida, Fusarium and Rhizopus isolates at micromolar concentrations, while only weakly affecting the growth of mammalian cell lines. Genetic and biochemical analyses in A. nidulans and Aspergillus fumigatus indicate that haemofungin primarily inhibits ferrochelatase (HemH), the last enzyme in the haem biosynthetic pathway. Haemofungin was non-toxic and significantly reduced mortality rates of G. mellonella and D. melanogaster infected with A. fumigatus and Rhizopus oryzae, respectively. CONCLUSIONS: Further development and in vivo validation of haemofungin is warranted.


Assuntos
Antifúngicos/farmacologia , Heme/antagonistas & inibidores , Heme/biossíntese , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Animais , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Farmacorresistência Fúngica , Sinergismo Farmacológico , Ferroquelatase/antagonistas & inibidores , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Humanos , Insetos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Protoporfirinas/biossíntese
13.
Antimicrob Agents Chemother ; 59(12): 7830-2, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26392499

RESUMO

Triazole prophylaxis has become the norm in patients with hematological malignancies. Breakthrough infections caused by Mucorales during triazole prophylaxis remain a challenging problem. We found that preexposure of Rhizopus oryzae to antifungal triazoles (fluconazole, voriconazole, posaconazole, and itraconazole) did not modify the in vitro susceptibility of Rhizopus oryzae to posaconazole. In contrast, preexposure of Rhizopus to triazoles was associated with the enhanced in vitro susceptibility of R. oryzae to amphotericin B. Preexposure to posaconazole did not alter the virulence of R. oryzae in the fly model of mucormycosis.


Assuntos
Antifúngicos/farmacologia , Fluconazol/farmacologia , Itraconazol/farmacologia , Rhizopus/efeitos dos fármacos , Triazóis/farmacologia , Voriconazol/farmacologia , Ágar , Animais , Meios de Cultura/química , Modelos Animais de Doenças , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/microbiologia , Feminino , Testes de Sensibilidade Microbiana , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Mucormicose/mortalidade , Rhizopus/crescimento & desenvolvimento , Rhizopus/patogenicidade , Análise de Sobrevida , Virulência
14.
Antimicrob Agents Chemother ; 59(9): 5631-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149982

RESUMO

Invasive mycotic infections have become more common during recent decades, posing an increasing threat to public health. However, despite the growing needs, treatments for invasive fungal infections remain unsatisfactory and are limited to a small number of antifungals. The aim of this study was to identify novel fungal cell wall inhibitors from a library of small chemical compounds using a conditional protein kinase C (PKC)-expressing strain of Aspergillus nidulans sensitive to cell wall-active agents. Eight "hit" compounds affecting cell wall integrity were identified from a screen of 35,000 small chemical compounds. Five shared a common basic molecular structure of 4-chloro-6-arylamino-7-nitro-benzofurazane (CANBEF). The most potent compound, CANBEF-24, was characterized further and was shown to inhibit the growth of pathogenic Aspergillus, Candida, Fusarium, and Rhizopus isolates at micromolar concentrations but not to affect the growth of mammalian cell lines. CANBEF-24 demonstrated strong synergy in combination with caspofungin, an antifungal that inhibits cell wall biosynthesis. Genetic and biochemical analyses with Aspergillus nidulans and Saccharomyces cerevisiae indicated that CANBEFs selectively inhibit fungal rRNA maturation and protein synthesis, suggesting that their effect on the cell wall is indirect. CANBEFs were nontoxic in insect (Galleria mellonella, Drosophila melanogaster) and mouse models of fungal infection. Preliminary evidence showing no therapeutic benefit in these models suggests that further cycles of optimization are needed for the development of this novel class of compounds for systemic use.


Assuntos
Antifúngicos/farmacologia , Proteínas Fúngicas/metabolismo , Animais , Aspergillus/efeitos dos fármacos , Aspergillus/metabolismo , Candida/efeitos dos fármacos , Candida/metabolismo , Linhagem Celular , Drosophila melanogaster/efeitos dos fármacos , Feminino , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Biossíntese de Proteínas/efeitos dos fármacos , Rhizopus/efeitos dos fármacos , Rhizopus/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
15.
Antimicrob Agents Chemother ; 60(3): 1226-33, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26643329

RESUMO

The modest in vitro activity of echinocandins against Aspergillus implies that host-related factors augment the action of these antifungal agents in vivo. We found that, in contrast to the other antifungal agents (voriconazole, amphotericin B) tested, caspofungin exhibited a profound increase in activity against various Aspergillus species under conditions of cell culture growth, as evidenced by a ≥4-fold decrease in minimum effective concentrations (MECs) (P = 0. 0005). Importantly, the enhanced activity of caspofungin against Aspergillus spp. under cell culture conditions was strictly dependent on serum albumin and was not observed with the other two echinocandins, micafungin and anidulafungin. Of interest, fluorescently labeled albumin bound preferentially on the surface of germinating Aspergillus hyphae, and this interaction was further enhanced upon treatment with caspofungin. In addition, supplementation of cell culture medium with albumin resulted in a significant, 5-fold increase in association of fluorescently labeled caspofungin with Aspergillus hyphae (P < 0.0001). Collectively, we found a novel synergistic interaction between albumin and caspofungin, with albumin acting as a potential carrier molecule to facilitate antifungal drug delivery to Aspergillus hyphae.


Assuntos
Albuminas/farmacologia , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Equinocandinas/farmacologia , Lipopeptídeos/farmacologia , Albuminas/metabolismo , Anidulafungina , Aspergilose/microbiologia , Aspergillus/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Caspofungina , Meios de Cultura/química , Humanos , Hifas/efeitos dos fármacos , Micafungina , Testes de Sensibilidade Microbiana , Voriconazol/farmacologia
16.
J Infect Dis ; 210(9): 1471-5, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24837401

RESUMO

High concentrations of methylprednisolone (0.32 mg/mL) accelerated growth and attenuated spontaneous apoptosis of Exserohilum rostratum in vitro. Injection of E. rostratum conidia preexposed to 0.32 mg/mL of methylprednisolone for 7 days in immunocompetent flies led to increased mortality and a higher fungal burden. Exposure to methylprednisolone could enhance the virulence of E. rostratum.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Metilprednisolona/farmacologia , Micoses/tratamento farmacológico , Animais , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/fisiologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/microbiologia , Humanos , Técnicas In Vitro , Micoses/microbiologia
17.
Infect Immun ; 82(7): 3058-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24799631

RESUMO

Compared to Cryptococcus neoformans, little is known about the virulence of the molecular types in Cryptococcus gattii. We compared in vitro virulence factor production and survival data using a Drosophila model of infection to further characterize the phenotypic features of different cryptococcal molecular types. Forty-nine different isolates were inoculated into wild-type flies and followed for survival. In vitro, isolates were assessed for growth at 30 and 37°C, melanin production, capsule size, resistance to H(2)O(2), and antifungal susceptibility. A mediator model was used to assess molecular type and virulence characteristics as predictors of survival in the fly model. VGIII was the most virulent molecular type in flies (P < 0.001). At 30°C, VGIII isolates grew most rapidly; at 37°C, VNI isolates grew best. C. gattii capsules were larger than those of C. neoformans (P < 0.001). Mediator model analysis found a strong correlation of Drosophila survival with molecular type and with growth at 30°C. We found molecular-type-specific differences in C. gattii in growth at different temperatures, melanin production, capsule size, ability to resist hydrogen peroxide, and antifungal susceptibility, while growth at 30°C and the VGIII molecular type were strongly associated with virulence in a Drosophila model of infection.


Assuntos
Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidade , Drosophila melanogaster/microbiologia , Animais , Antifúngicos/uso terapêutico , Cryptococcus gattii/citologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/fisiologia , Farmacorresistência Fúngica , Regulação Bacteriana da Expressão Gênica , Melaninas/metabolismo , Virulência
18.
Antimicrob Agents Chemother ; 58(11): 6767-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182639

RESUMO

We used two established neutropenic murine models of pulmonary aspergillosis and mucormycosis to explore the association between the posaconazole area under the concentration-time curve (AUC)-to-MIC ratio (AUC/MIC) and treatment outcome. Posaconazole serum pharmacokinetics were verified in infected mice to ensure that the studied doses reflected human exposures with the oral suspension, delayed-release tablet, and intravenous formulations of posaconazole. Sinopulmonary infections were then induced in groups of neutropenic mice with Aspergillus fumigatus strain 293 (posaconazole MIC, 0.5 mg/liter) or Rhizopus oryzae strain 969 (posaconazole MIC, 2 mg/liter) and treated with escalating daily dosages of oral posaconazole, which was designed to achieve AUCs ranging from 1.10 to 392 mg · h/liter. After 5 days of treatment, lung fungal burden was analyzed by quantitative real-time PCR. The relationships of the total drug AUC/MIC and the treatment response were similar in both models, with 90% effective concentrations (EC90s) corresponding to an AUC/MIC threshold of 76 (95% confidence interval [CI], 46 to 102) for strain 293 versus 87 (95% CI, 66 to 101) for strain 969. Using a provisional AUC/MIC target of >100, these exposures correlated with minimum serum posaconazole concentrations (Cmins) of 1.25 mg/liter for strain 293 and 4.0 mg/liter for strain 969. The addition of deferasirox, but not liposomal amphotericin or caspofungin, improved the activity of a suboptimal posaconazole regimen (AUC/MIC, 33) in animals with pulmonary mucormycosis. However, no combination was as effective as the high-dose posaconazole monotherapy regimen (AUC/MIC, 184). Our analysis suggests that posaconazole pharmacodynamics are similar for A. fumigatus and R. oryzae when indexed to pathogen MICs.


Assuntos
Antifúngicos/farmacocinética , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Mucormicose/tratamento farmacológico , Triazóis/farmacocinética , Triazóis/uso terapêutico , Anfotericina B/farmacologia , Animais , Antifúngicos/uso terapêutico , Área Sob a Curva , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Benzoatos/farmacologia , Caspofungina , Deferasirox , Modelos Animais de Doenças , Quimioterapia Combinada , Equinocandinas/farmacologia , Feminino , Aspergilose Pulmonar Invasiva/microbiologia , Lipopeptídeos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Neutropenia , Rhizopus/efeitos dos fármacos , Resultado do Tratamento , Triazóis/farmacologia
19.
J Infect Dis ; 207(7): 1066-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23303813

RESUMO

In invasive pulmonary aspergillosis, direct invasion and occlusion of pulmonary vasculature by Aspergillus hyphae causes tissue hypoxia, which is enhanced by secreted fungal metabolites that downregulate compensatory angiogenic signaling pathways. We assessed the effects of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) on survival rates, fungal burden, and in situ angiogenesis in a murine invasive pulmonary aspergillosis model. bFGF and VEGF monotherapy significantly increased survival rates and potentiated the activity of amphotericin B. bFGF-containing regimens were associated with reduced tissue fungal burdens. bFGF and VEGF reversed the antiangiogenic activity of Aspergillus fumigatus; however, VEGF induced the formation of immature neovessels, providing an explanation for its lesser efficacy. Treatment with bFGF plus amphotericin B was associated with neutrophil influx into Aspergillus-infected pulmonary tissue, suggesting that this combination limits fungal growth through neutrophil trafficking. Vasculogenic pathways are unexplored targets for the treatment of invasive pulmonary aspergillosis and may potentiate both innate immunity and antifungal drug activity against A. fumigatus.


Assuntos
Indutores da Angiogênese/uso terapêutico , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/patogenicidade , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Anfotericina B/uso terapêutico , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Imuno-Histoquímica , Pulmão/microbiologia , Pulmão/patologia , Pneumopatias Fúngicas/tratamento farmacológico , Pneumopatias Fúngicas/microbiologia , Pneumopatias Fúngicas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Neutrófilos/efeitos dos fármacos , Proteínas Recombinantes/uso terapêutico , Análise de Sobrevida
20.
J Infect Dis ; 207(5): 834-41, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23242544

RESUMO

BACKGROUND: We hypothesized that tacrolimus, an inhibitor of the calcineurin pathway, would enhance the in vivo activity of posaconazole against Rhizopus oryzae, the Mucorales species most commonly associated with mucormycosis. METHODS: We examined patterns of growth inhibition and fungicidal activity of posaconazole and tacrolimus, alone and in combination, against R. oryzae in vitro, using multiple methods (ie, hyphal metabolic and fluorescent vital dye reduction assays and measurement of chitin concentrations), and in vivo, using 2 mucormycosis models: an invertebrate model (Drosophila) and a nonlethal murine model of cutaneous mucormycosis. RESULTS: Combinations of posaconazole and tacrolimus were synergistic in checkerboard assays for 4 clinical isolates of R. oryzae (48-hour fractional inhibitory concentration index, 0.187-0.281). Pharmacodynamic analysis of the combination revealed that the 90% effective concentration threshold of posaconazole activity against R. oryzae could be achieved with 2-fold lower drug concentrations (0.5-1 mg/L) when administered with tacrolimus (0.007-2 mg/L). In vivo, combination therapy was associated with improved survival in the fly model of mucormycosis (65% vs 57% posaconazole alone) and with significant reductions in cutaneous lesions and R. oryzae fungal burden, compared with animals that received posaconazole monotherapy, in the cutaneous model of mucormycosis. CONCLUSIONS: Combination posaconazole-tacrolimus therapy displays synergism in vitro and improved antifungal efficacy in vivo in 2 phylogenetically distinct models of mucormycosis.


Assuntos
Antifúngicos/administração & dosagem , Mucormicose/tratamento farmacológico , Rhizopus/efeitos dos fármacos , Tacrolimo/administração & dosagem , Triazóis/administração & dosagem , Animais , Antifúngicos/farmacologia , Modelos Animais de Doenças , Drosophila/microbiologia , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Tacrolimo/farmacologia , Resultado do Tratamento , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA