Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 112(6): 2467-2480, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33756060

RESUMO

The antibody-drug conjugate (ADC) MORAb-202, consisting of farletuzumab paired with a cathepsin B-cleavable linker and eribulin, targets folate receptor alpha (FRA), which is frequently overexpressed in various tumor types. MORAb-202 was highly cytotoxic to FRA-positive cells in vitro, with limited off-target killing of FRA-negative cells. Furthermore, MORAb-202 showed a clear in vitro bystander cytotoxic effect in coculture with FRA-positive/negative cells. In vivo antitumor efficacy studies of MORAb-202 were conducted with a single administration of MORAb-202 in triple-negative breast cancer (TNBC) patient-derived xenograft (PDx) models expressing low and high levels of FRA. MORAb-202 exhibited durable efficacy proportional to tumor FRA expression. Toxicology studies (Q3Wx2) in nonhuman primates suggested that the major observed toxicity of MORAb-202 is hematologic toxicity. Overall, these findings support the concept that MORAb-202 represents a promising investigational ADC for the treatment of TNBC patients.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Furanos/química , Imunoconjugados/administração & dosagem , Cetonas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas de Transporte Vesicular/metabolismo , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Furanos/farmacologia , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Cetonas/farmacologia , Camundongos , Modelagem Computacional Específica para o Paciente , Primatas , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Genomics ; 109(3-4): 251-257, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28450240

RESUMO

Farletuzumab (FAR) is a humanized monoclonal antibody (mAb) that binds to folate receptor alpha. A Ph3 trial in ovarian cancer patients treated with carboplatin/taxane plus FAR or placebo did not meet the primary statistical endpoint. Subgroup analysis demonstrated that subjects with high FAR exposure levels (Cmin>57.6µg/mL) showed statistically significant improvements in PFS and OS. The neonatal Fc receptor (fcgrt) plays a central role in albumin/IgG stasis and mAb pharmacokinetics (PK). Here we evaluated fcgrt sequence and association of its promoter variable number tandem repeats (VNTR) and coding single nucleotide variants (SNV) with albumin/IgG levels and FAR PK in the Ph3 patients. A statistical correlation existed between high FAR Cmin and AUC in patients with the highest quartile of albumin and lowest quartile of IgG1. Analysis of fcgrt identified 5 different VNTRs in the promoter region and 9 SNVs within the coding region, 4 which are novel.


Assuntos
Albuminas/farmacocinética , Anticorpos Monoclonais Humanizados/farmacocinética , Antígenos de Histocompatibilidade Classe I/genética , Imunoglobulina G/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Receptores Fc/genética , Albuminas/análise , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Ensaios Clínicos Fase III como Assunto , Feminino , Humanos , Imunoglobulina G/sangue , Repetições Minissatélites , Recidiva Local de Neoplasia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único
3.
Bioconjug Chem ; 28(9): 2471-2484, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28820579

RESUMO

The use of microbial transglutaminase (MTG) to produce site-specific antibody-drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab' fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.


Assuntos
Substituição de Aminoácidos , Imunoconjugados/metabolismo , Imunoglobulina G/metabolismo , Lisina/metabolismo , Streptomyces/enzimologia , Transglutaminases/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Imunoconjugados/química , Imunoconjugados/genética , Imunoglobulina G/química , Imunoglobulina G/genética , Lisina/química , Lisina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Engenharia de Proteínas , Especificidade por Substrato
4.
Bioorg Med Chem Lett ; 26(8): 2092-7, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26951751

RESUMO

(-)-Agelastatin A (AglA, 1), a member of the pyrrole-aminoimidazole marine alkaloid (PAI) family, possesses a unique tetracyclic structure and is one of the most potent anticancer PAIs isolated to date. In efforts to expand the SAR of these agents and delineate sites that tolerate modification while retaining activity, we synthesized several derivatives and tested their anticancer activity. The cytotoxic effects of these derivatives were measured against several cancer cell lines including cervical cancer (HeLa), epidermoid carcinoma (A431), ovarian (Igrov and Ovcar3), osteosarcoma (SJSA1), acute T cell leukemia (A3), epidermoid carcinoma (A431) in addition to primary human chronic lymphocytic leukemia (CLL) cells. New positions for modification of AglA and new substitutions were explored leading to novel derivatives, 14-chloro AglA (3) and 14-methyl AglA (12), that retained activity toward various cancer cell lines with decreased toxicity toward B- and T-cells. The SAR data informed the synthesis of a trifunctional probe bearing an alkyne and a diazirine potentially useful for cellular target identification.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Sondas Moleculares/síntese química , Sondas Moleculares/farmacologia , Oxazolidinonas/química , Oxazolidinonas/farmacologia , Alcaloides/síntese química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Sondas Moleculares/química , Estrutura Molecular , Oxazolidinonas/síntese química , Relação Estrutura-Atividade
5.
J Am Chem Soc ; 135(35): 12994-7, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23957305

RESUMO

A general C-H functionalization method for the tagging of natural products and pharmaceuticals is described. An azide-containing sulfinate reagent allows the appendage of azidoalkyl chains onto heteroaromatics, the product of which can then be attached to a monoclonal antibody by a "click" reaction. This strategy expands the breadth of bioactive small molecules that can be linked to macromolecules in a manner that is beyond the scope of existing methods in bioconjugation to permit tagging of the "seemingly untaggable".


Assuntos
Anticorpos Monoclonais/química , Azidas/química , Produtos Biológicos/química , Ácidos Sulfínicos/química , Química Click , Estrutura Molecular
6.
J Surg Res ; 165(1): 38-45, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19552923

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) has insulinomimetic, insulinotropic, and antiapoptotic properties that may make it a useful adjunct to reperfusion therapy for myocardial infarction (MI); however, GLP-1 has a short plasma half-life. Fusion of GLP-1 to human transferrin (GLP-1-Tf) significantly prolongs drug half-life. MATERIALS AND METHODS: We tested the ability of single dose GLP-1-Tf to limit myocardial ischemia (30 min)/reperfusion (180 min) injury in rabbits. Nineteen animals were untreated controls. The pre-ischemic group (n=10) was given 10mg/kg of GLP-1-Tf 12 h before ischemia. Immediately after reperfusion, the post-ischemic group (n=10) received GLP-1-Tf (10 mg/kg) and the Tf group (n=4) received transferrin alone. RESULTS: Infarct size as a percentage of the area at risk was 59.1% ± 1.3%, 45.7% ± 1.9%, 44.1% ± 3.3%, 59.7% ± 2.0% in the control group, pre-ischemic group, post-ischemic group, and Tf group, respectively (P<0.05 for both GLP-1-Tf treatments group versus control). GLP-1-Tf reduced the apoptotic index from 4.67% ± 0.40% in the control group to 3.15% ± 0.46% in the pre-ischemic group and to 2.66% ± 0.40% in the post-ischemic group (P<0.05 for both GLP-1-Tf treatments versus control). The size of the wall motion abnormality and ejection fraction was significantly improved in the post-ischemic group relative to the control group. Serum GLP-1 levels were 239.8 ± 25.7 µg/mL in the post-ischemic group, 27.9 ± 5.8 µg/mL in the pre-ischemic group, and undetectable in the control group. CONCLUSION: GLP-1-Tf limits myocardial reperfusion injury whether given prior to the onset of ischemia or given at reperfusion. GLP-1-Tf may also limit myocardial stunning at high serum levels of the drug.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Transferrina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ecocardiografia , Peptídeo 1 Semelhante ao Glucagon/sangue , Hemodinâmica/efeitos dos fármacos , Miócitos Cardíacos/patologia , Coelhos , Proteínas Recombinantes de Fusão/uso terapêutico
7.
J Immune Based Ther Vaccines ; 8: 9, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21176153

RESUMO

BACKGROUND: Staphylococcal enterotoxins are considered potential biowarfare agents that can be spread through ingestion or inhalation. Staphylococcal enterotoxin B (SEB) is a widely studied superantigen that can directly stimulate T-cells to release a massive amount of proinflammatory cytokines by bridging the MHC II molecules on an antigen presenting cell (APC) and the Vß chains of the T-cell receptor (TCR). This potentially can lead to toxic, debilitating and lethal effects. Currently, there are no preventative measures for SEB exposure, only supportive therapies. METHODS: To develop a potential therapeutic candidate to combat SEB exposure, we have generated three human B-cell hybridomas that produce human monoclonal antibodies (HuMAbs) to SEB. These HuMAbs were screened for specificity, affinity and the ability to block SEB activity in vitro as well as its lethal effect in vivo. RESULTS: The high-affinity HuMAbs, as determined by BiaCore analysis, were specific to SEB with minimal crossreactivity to related toxins by ELISA. In an immunoblotting experiment, our HuMAbs bound SEB mixed in a cell lysate and did not bind any of the lysate proteins. In an in vitro cell-based assay, these HuMAbs could inhibit SEB-induced secretion of the proinflammatory cytokines (INF-γ and TNF-α) by primary human lymphocytes with high potency. In an in vivo LPS-potentiated mouse model, our lead antibody, HuMAb-154, was capable of neutralizing up to 100 µg of SEB challenge equivalent to 500 times over the reported LD50 (0.2 µg) , protecting mice from death. Extended survival was also observed when HuMAb-154 was administered after SEB challenge. CONCLUSION: We have generated high-affinity SEB-specific antibodies capable of neutralizing SEB in vitro as well as in vivo in a mouse model. Taken together, these results suggest that our antibodies hold the potential as passive immunotherapies for both prophylactic and therapeutic countermeasures of SEB exposure.

8.
Acta Neuropathol Commun ; 8(1): 13, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019610

RESUMO

Tau deposition in the brain is a pathological hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). During the course of these tauopathies, tau spreads throughout the brain via synaptically-connected pathways. Such propagation of pathology is thought to be mediated by tau species ("seeds") containing the microtubule binding region (MTBR) composed of either three repeat (3R) or four repeat (4R) isoforms. The tau MTBR also forms the core of the neuropathological filaments identified in AD brain and other tauopathies. Multiple approaches are being taken to limit tau pathology, including immunotherapy with anti-tau antibodies. Given its key structural role within fibrils, specifically targetting the MTBR with a therapeutic antibody to inhibit tau seeding and aggregation may be a promising strategy to provide disease-modifying treatment for AD and other tauopathies. Therefore, a monoclonal antibody generating campaign was initiated with focus on the MTBR. Herein we describe the pre-clinical generation and characterisation of E2814, a humanised, high affinity, IgG1 antibody recognising the tau MTBR. E2814 and its murine precursor, 7G6, as revealed by epitope mapping, are antibodies bi-epitopic for 4R and mono-epitopic for 3R tau isoforms because they bind to sequence motif HVPGG. Functionally, both antibodies inhibited tau aggregation in vitro. They also immunodepleted a variety of MTBR-containing tau protein species. In an in vivo model of tau seeding and transmission, attenuation of deposition of sarkosyl-insoluble tau in brain could also be observed in response to antibody treatment. In AD brain, E2814 bound different types of tau filaments as shown by immunogold labelling and recognised pathological tau structures by immunohistochemical staining. Tau fragments containing HVPGG epitopes were also found to be elevated in AD brain compared to PSP or control. Taken together, the data reported here have led to E2814 being proposed for clinical development.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Anticorpos Monoclonais/imunologia , Imunização Passiva/métodos , Proteínas tau/genética , Proteínas tau/imunologia , Doença de Alzheimer/patologia , Animais , Anticorpos Monoclonais/farmacologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Masculino , Camundongos Transgênicos , Agregação Patológica de Proteínas/imunologia , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/farmacologia
9.
Methods Mol Biol ; 2033: 53-65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31332747

RESUMO

Random conjugation of chemical linkers to endogenous lysines or cysteines within an antibody yields a heterogeneous mixture of conjugates with various drug-to-antibody ratios. One approach for generating homogeneous antibody conjugates utilizes enzymatic transfer of payloads onto a specific glycan or amino acid residue. Microbial transglutaminase (MTG) is an enzyme that catalyzes the formation of a stable isopeptide bond between a glutamine and a lysine. We have previously identified and reported several sites throughout the antibody structure where an engineered lysine is sufficient for transfer of a glutamine-based substrate onto the antibody. Whereas other enzymatic transfer strategies typically require significant antibody engineering to either modify the N-glycans or introduce a multi-amino acid enzyme recognition site, the lower contextual specificity of MTG for lysines allows just a single lysine point mutation in an antibody to be efficiently transamidated. Here we describe the molecular positioning of these single engineered lysine residues and the conjugation conditions for producing homogeneous antibody conjugates exemplified using azido- and auristatin F-based acyl donor substrates.


Assuntos
Glutamina/genética , Imunoconjugados/genética , Lisina/genética , Engenharia de Proteínas/métodos , Transglutaminases/química , Anticorpos/genética , Anticorpos/imunologia , Cisteína/genética , Humanos , Imunoconjugados/imunologia , Streptomyces/enzimologia , Especificidade por Substrato
10.
EBioMedicine ; 44: 489-501, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31221584

RESUMO

BACKGROUND: A positive energy balance promotes white adipose tissue (WAT) expansion which is characterized by activation of a repertoire of events including hypoxia, inflammation and extracellular matrix remodelling. The transmembrane glycoprotein CD248 has been implicated in all these processes in different malignant and inflammatory diseases but its potential impact in WAT and metabolic disease has not been explored. METHODS: The role of CD248 in adipocyte function and glucose metabolism was evaluated by omics analyses in human WAT, gene knockdowns in human in vitro differentiated adipocytes and by adipocyte-specific and inducible Cd248 gene knockout studies in mice. FINDINGS: CD248 is upregulated in white but not brown adipose tissue of obese and insulin-resistant individuals. Gene ontology analyses showed that CD248 expression associated positively with pro-inflammatory/pro-fibrotic pathways. By combining data from several human cohorts with gene knockdown experiments in human adipocytes, our results indicate that CD248 acts as a microenvironmental sensor which mediates part of the adipose tissue response to hypoxia and is specifically perturbed in white adipocytes in the obese state. Adipocyte-specific and inducible Cd248 knockouts in mice, both before and after diet-induced obesity and insulin resistance/glucose intolerance, resulted in increased microvascular density as well as attenuated hypoxia, inflammation and fibrosis without affecting fat cell volume. This was accompanied by significant improvements in insulin sensitivity and glucose tolerance. INTERPRETATION: CD248 exerts detrimental effects on WAT phenotype and systemic glucose homeostasis which may be reversed by suppression of adipocyte CD248. Therefore, CD248 may constitute a target to treat obesity-associated co-morbidities.


Assuntos
Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Antígenos CD/genética , Antígenos de Neoplasias/genética , Metabolismo Energético/genética , Hipóxia/metabolismo , Paniculite/genética , Paniculite/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Matriz Extracelular , Feminino , Fibrose , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Paniculite/patologia , Transdução de Sinais
11.
Mol Cancer Ther ; 17(12): 2665-2675, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30262588

RESUMO

Microtubule-targeting agents (MTA) have been investigated for many years as payloads for antibody-drug conjugates (ADC). In many cases, these ADCs have shown limited benefits due to lack of efficacy or significant toxicity, which has spurred continued investigation into novel MTA payloads for next-generation ADCs. In this study, we have developed ADCs using the MTA eribulin, a derivative of the macrocyclic polyether natural product halichondrin B, as a payload. Eribulin ADCs demonstrated in vitro potency and specificity using various linkers and two different conjugation approaches. MORAb-202 is an investigational agent that consists of the humanized anti-human folate receptor alpha (FRA) antibody farletuzumab conjugated via reduced interchain disulfide bonds to maleimido-PEG2-valine-citrulline-p-aminobenzylcarbamyl-eribulin at a drug-to-antibody ratio of 4.0. MORAb-202 displayed preferable biophysical properties and broad potency across a number of FRA-positive tumor cell lines as well as demonstrated improved specificity in vitro compared with farletuzumab conjugated with a number of other MTA payloads, including MMAE, MMAF, and the reducible maytansine linker-payload sulfo-SPDB-DM4. A single-dose administration of MORAb-202 in FRA-positive human tumor cell line xenograft and patient-derived tumor xenograft models elicited a robust and durable antitumor response. These data support further investigation of MORAb-202 as a potential new treatment modality for FRA-positive cancers, using the novel MTA eribulin as a payload.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Receptor 1 de Folato/antagonistas & inibidores , Furanos/farmacologia , Imunoconjugados/farmacologia , Cetonas/farmacologia , Microtúbulos/metabolismo , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Receptor 1 de Folato/metabolismo , Furanos/química , Humanos , Imunoconjugados/química , Cetonas/química , Camundongos SCID , Polietilenoglicóis/química , Resultado do Tratamento
12.
MAbs ; 9(6): 907-915, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28541812

RESUMO

The prevailing techniques used to generate antibody-drug conjugates (ADCs) involve random conjugation of the linker-drug to multiple lysines or cysteines in the antibody. Engineering natural and non-natural amino acids into an antibody has been demonstrated to be an effective strategy to produce homogeneous ADC products with defined drug-to-antibody ratios. We recently reported an efficient residue-specific conjugation technology (RESPECT) where thiol-reactive payloads can be efficiently conjugated to a native unpaired cysteine in position 80 (C80) of rabbit light chains. Deimmunizing the rabbit variable domains through humanization is necessary to reduce the risk of anti-drug antibody responses in patients. However, we found that first-generation humanized RESPECT ADCs showed high levels of aggregation and low conjugation efficiency. We correlated these negative properties to the phenylalanine at position 83 present in most human variable kappa frameworks. When position 83 was substituted with selected amino acids, conjugation was restored and aggregation was reduced to levels similar to the chimeric ADC. This engineering strategy allows for development of second-generation humanized RESPECT ADCs with desirable biopharmaceutical properties.

13.
Cancer Biol Ther ; 18(5): 347-357, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28394698

RESUMO

The conjugation of toxins, dyes, peptides, or proteins to monoclonal antibodies is often performed via free thiol groups generated by either partial reduction methods or engineering free cysteine residues into the antibody sequence. Antibodies from the rabbit Oryctolagus cuniculus have an additional intrachain disulfide bond, whereby the light chain variable kappa domain is bridged to the constant kappa region between cysteine residues at positions 80 and 171, respectively. Chimerization of rabbit antibodies with human constant domains allows for the generation of a free thiol group at the light chain position 80 (C80) that can be used for site-specific conjugation. An efficient process for the purification and simultaneous removal of cysteinylation at the C80 site was developed. The unpaired C80 was shown to be efficiently conjugated using several different maleimido-based ligands. REsidue SPEcific Conjugation Technology (RESPECT) antibody-drug conjugates prepared using rabbit-human chimeric anti-human mesothelin rabbit antibodies and maleimido-PEG2-auristatin conjugated to C80 were shown to be highly potent and specific in vitro and effective in vivo in reduction of tumor growth in a highly aggressive mesothelin-expressing xenograft tumor model.


Assuntos
Anticorpos Monoclonais/imunologia , Imunoconjugados/imunologia , Neoplasias/tratamento farmacológico , Aminobenzoatos/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/uso terapêutico , Cisteína/química , Cisteína/imunologia , Humanos , Imunoconjugados/uso terapêutico , Mesotelina , Camundongos , Neoplasias/imunologia , Oligopeptídeos/imunologia , Coelhos , Trastuzumab/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Oncotarget ; 8(32): 52045-52060, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881712

RESUMO

Cancers employ a number of mechanisms to evade host immune responses. Here we report the effects of tumor-shed antigen CA125/MUC16 on suppressing IgG1-mediated antibody-dependent cellular cytotoxicity (ADCC). This evidence stems from prespecified subgroup analysis of a Phase 3 clinical trial testing farletuzumab, a monoclonal antibody to folate receptor alpha, plus standard-of-care carboplatin-taxane chemotherapy in patients with recurrent platinum-sensitive ovarian cancer. Patients with low serum CA125 levels treated with farletuzumab demonstrated improvements in progression free survival (HR 0.49, p = 0.0028) and overall survival (HR 0.44, p = 0.0108) as compared to placebo. Farletuzumab's pharmacologic activity is mediated in part through ADCC. Here we show that CA125 inhibits ADCC by directly binding to farletuzumab that in turn perturbs Fc-γ receptor engagement on effector cells.

15.
Oncotarget ; 7(43): 69420-69435, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27494870

RESUMO

Endosialin (Tumor Endothelial Marker-1 (TEM-1), CD248) is primarily expressed on pericytes of tumor-associated microvasculature, tumor-associated stromal cells and directly on tumors of mesenchymal origin, including sarcoma and melanoma. While the function of endosialin/TEM-1 is incompletely understood, studies have suggested a role in supporting tumor growth and invasion thus making it an attractive therapeutic target. In an effort to further understand its role in cancer, we previously developed a humanized anti-endosialin/TEM-1 monoclonal antibody (mAb), called ontuxizumab (MORAb-004) for testing in preclinical and clinical studies. We herein report on the generation of an extensive panel of recombinant endosialin/TEM-1 protein extracellular domain (ECD) fragments and novel mAbs against ECD motifs. The domain-specific epitopes were mapped against ECD sub-domains to identify those that can detect distinct structural motifs and can be potentially formatted as probes suitable for diagnostic and functional studies. A number of mAbS were shown to cross-react with the murine and human protein, potentially allowing their use in human animal models and corresponding clinical trials. In addition, pairing of several mAbs supported their use in immunoassays that can detect soluble endosialin/TEM-1 (sEND) in the serum of healthy subjects and cancer patients.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Antígenos de Neoplasias/imunologia , Epitopos/imunologia , Proteínas Recombinantes/imunologia , Animais , Especificidade de Anticorpos/imunologia , Antígenos CD/sangue , Antígenos CD/genética , Antígenos de Neoplasias/sangue , Antígenos de Neoplasias/genética , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Células CHO , Cricetinae , Cricetulus , Reações Cruzadas/imunologia , Células HEK293 , Humanos , Camundongos , Neoplasias/sangue , Neoplasias/imunologia , Neoplasias/metabolismo , Ratos Endogâmicos Lew
16.
Cancer Biother Radiopharm ; 20(6): 589-602, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16398611

RESUMO

776.1 is a murine IgG1 monoclonal antibody to the human ovarian cancer antigen CA 125 that has the unique property of having a clear preference for binding to the cell-associated form of the antigen. We have examined the tumor localization properties and efficacy of 776.1 in a subcutaneous OVCAR-3 xenograft mouse model of human ovarian cancer. Biodistribution experiments using (125)I-labeled 776.1 demonstrated a peak uptake in tumors at 72 hours postinjection, with an average of 17.7% of injected dose per gram localized to the tumor. Little uptake in other organs was observed. Further experiments using CA 125-transfected syngeneic tumors, as well as an immunoprecipitation assay using human chimeric 776.1, both clearly demonstrated that 776.1 localizes to the tumor in a CA 125-dependent manner. DOTA-776.1 (1,4,7,10-tetraazacyclododecane-N,N',N",N'" tetraacetic acid-conjugated 776.1) was labeled with (90)Y and used in efficacy studies. [(90)Y-DOTA]776.1 at a single dose of 150 microCi was able to mediate efficient reduction of tumor growth, with regression observed in a subset of animals for a period ranging from 3 to 48 days, equivalent to 3 weekly administrations of cisplatin at 6 mg/kg. No significant regression was observed in groups receiving [(90)Y-DOTA]MOPC-21 control antibody at any dose. These results suggest that 776.1 may be a promising radioimmunotherapeutic agent for the treatment of human ovarian cancer.


Assuntos
Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Neoplasias Ovarianas/radioterapia , Radioimunoterapia/métodos , Animais , Antígeno Ca-125/análise , Feminino , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina G/uso terapêutico , Radioisótopos do Iodo/farmacocinética , Radioisótopos do Iodo/uso terapêutico , Camundongos , Distribuição Tecidual , Transplante Heterólogo , Radioisótopos de Ítrio/farmacocinética , Radioisótopos de Ítrio/uso terapêutico
17.
Cancer Biother Radiopharm ; 20(3): 300-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15989475

RESUMO

Tissue factor (TF) is a type I transmembrane protein and the initiator of the extrinsic blood coagulation pathway. TF plays a critical role in tumor development and its overexpression is observed in many tumors. To understand the prevalence and relative level of TF expression in non-small-cell lung cancer (NSCLC), we analyzed 50 NSCLC tumors by immunohistochemical staining and found that 88% of human NSCLC tumors overexpressed TF. We then generated a high affinity anti-TF antibody, TF278, which specifically binds TF on the surface of cells and is internalized upon binding. An 111In-labeled TF278 demonstrated favorable tumor accumulation in an SW-900 xenograft tumor model with a maximum mean percent of injected dose per gram of tissue (%ID/g) of 73.1% at 96 hours postinjection. In addition, we labeled the antibody with 90Y and tested its ability to inhibit the growth of tumors in an SW-900 xenograft tumor model in immunocompromised mice. The 90Y-TF278 slowed the growth of SW-900 tumors at a 50 microCi dose and completely regressed SW-900 tumors at a 150 microCi dose with little toxicity.


Assuntos
Anticorpos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tromboplastina/imunologia , Animais , Antígenos/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Endocitose , Humanos , Camundongos , Camundongos Nus , Doses de Radiação , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Radioisótopos de Ítrio/administração & dosagem , Radioisótopos de Ítrio/farmacocinética , Radioisótopos de Ítrio/uso terapêutico
18.
Oncotarget ; 6(28): 25429-40, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26327620

RESUMO

Over-expression of endosialin/CD248 (herein referred to as CD248) has been associated with increased tumor microvasculature in various tissue origins which makes it an attractive anti-angiogenic target. In an effort to target CD248, we have generated a human CD248 knock-in mouse line and MORAb-004, the humanized version of the mouse anti-human CD248 antibody Fb5. Here, we report that MORAb-004 treatment significantly impacted syngeneic tumor growth and tumor metastasis in the human CD248 knock-in mice. In comparison with untreated tumors, MORAb-004 treated tumors displayed overall shortened and distorted blood vessels. Immunofluorescent staining of tumor sections revealed drastically more small and dysfunctional vessels in the treated tumors. The CD248 levels on cell surfaces of neovasculature pericytes were significantly reduced due to its internalization. This reduction of CD248 was also accompanied by reduced α-SMA expression, depolarization of pericytes and endothelium, and ultimately dysfunctional microvessels. These results suggest that MORAb-004 reduced CD248 on pericytes, impaired tumor microvasculature maturation and ultimately suppressed tumor development.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Microvasos/efeitos dos fármacos , Neovascularização Patológica , Pericitos/efeitos dos fármacos , Actinas/metabolismo , Inibidores da Angiogênese/metabolismo , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Transporte Biológico , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/imunologia , Microvasos/metabolismo , Microvasos/patologia , Metástase Neoplásica , Pericitos/imunologia , Pericitos/metabolismo , Pericitos/patologia , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos
19.
Front Oncol ; 4: 141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982846

RESUMO

Novel technologies are being developed to improve patient therapy through the identification of targets and surrogate molecular signatures that can help direct appropriate treatment regimens for efficacy and drug safety. This is particularly the case in oncology whereby patient tumor and biofluids are routinely isolated and analyzed for genetic, immunohistochemical, and/or soluble markers to determine if a predictive biomarker signature (i.e., mutated gene product, differentially expressed protein, altered cell surface antigen, etc.) exists as a means for selecting optimal treatment. These biomarkers may be drug-specific targets and/or differentially expressed nucleic acids, proteins, or cell lineage profiles that can directly affect the patient's disease tissue or immune response to a therapeutic regimen. Improvements in diagnostics that can prescreen predictive response biomarker profiles will continue to optimize the ability to enhance patient therapy via molecularly defined disease-specific treatment. Conversely, patients lacking predictive response biomarkers will no longer needlessly be exposed to drugs that are unlikely to provide clinical benefit, thereby enabling patients to pursue other therapeutic options and lowering overall healthcare costs by avoiding futile treatment. While patient molecular profiling offers a powerful tool to direct treatment options, the difficulty in identifying disease-specific targets or predictive biomarker signatures that stratify a significant fraction within a disease indication remains challenging. A goal for drug developers is to identify and implement new strategies that can rapidly enable the development of beneficial disease-specific therapies for broad patient-specific targeting without the need of tedious predictive biomarker discovery and validation efforts, currently a bottleneck for development timelines. Successful strategies may gain an advantage by employing repurposed, less-expensive existing agents while potentially improving the therapeutic activity of novel, target-specific therapies that may otherwise have off-target toxicities or less efficacy in cells exhibiting certain pathways. Here, we discuss the use of co-developing diagnostic-targeting vectors to identify patients whose malignant tissue can specifically uptake a targeted anti-cancer drug vector prior to treatment. Using this system, a patient can be predetermined in real-time as to whether or not their tumor(s) can specifically uptake a drug-linked diagnostic vector, thus inferring the uptake of a similar vector linked to an anti-cancer agent. If tumor-specific uptake is observed, then the patient may be suitable for drug-linked vector therapy and have a higher likelihood of clinical benefit while patients with no tumor uptake should consider other therapeutic options. This approach offers complementary opportunities to rapidly develop broad tumor-specific agents for use in personalized medicine.

20.
Cancer Biol Ther ; 14(11): 1032-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24025360

RESUMO

Because of its high mortality rate, ovarian cancer is a leading cause of death among women and a highly unmet medical need. New therapeutic agents that are effective and well tolerated are needed and cancer antigen-specific monoclonal antibodies that have direct pharmacologic effects or can stimulate immunological responses represent a promising class of agents for the treatment of this disease. The human folate receptor α (FOLR1), which is overexpressed in ovarian cancer but largely absent in normal tissues, appears to play a role in the transformed phenotype in ovarian cancer, cisplatin sensitivity, and growth in depleted folate conditions and therefore has potential as a target for passive immunotherapy. The anti-FOLR1 monoclonal antibody MORAb-003 (farletuzumab) was previously shown to elicit antibody dependent cellular cytotoxicity (ADCC) and inhibit tumor growth of human tumor xenografts in nude mice. Because of its promising preclinical profile, farletuzumab has been evaluated in clinical trials as a potential therapeutic agent for ovarian cancer. In this report, we demonstrated that farletuzumab's antitumor effect against an experimental model of ovarian cancer is mediated by its ADCC activity.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos/farmacologia , Receptor 1 de Folato/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA