Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 25(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486239

RESUMO

High genetic and phenotypic variability between Leishmania species and strains within species make the development of broad-spectrum antileishmanial drugs challenging. Thus, screening panels consisting of several diverse Leishmania species can be useful in enabling compound prioritization based on their spectrum of activity. In this study, a robust and reproducible high content assay was developed, and 1280 small molecules were simultaneously screened against clinically relevant cutaneous and visceral species: L. amazonensis, L. braziliensis, and L. donovani. The assay is based on THP-1 macrophages infected with stationary phase promastigotes and posterior evaluation of both compound antileishmanial activity and host cell toxicity. The profile of compound activity was species-specific, and out of 51 active compounds, only 14 presented broad-spectrum activity against the three species, with activities ranging from 52% to 100%. Notably, the compounds CB1954, Clomipramine, Maprotiline, Protriptyline, and ML-9 presented pan-leishmanial activity, with efficacy greater than 70%. The results highlight the reduced number of compound classes with pan-leishmanial activity that might be available from diversity libraries, emphasizing the need to screen active compounds against a panel of species and strains. The assay reported here can be adapted to virtually any Leishmania species without the need for genetic modification of parasites, providing the basis for the discovery of broad spectrum anti-leishmanial agents.


Assuntos
Leishmaniose/tratamento farmacológico , Animais , Antiprotozoários/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Leishmania/efeitos dos fármacos , Leishmania/patogenicidade , Leishmaniose Visceral/tratamento farmacológico , Maprotilina/química , Camundongos , Protriptilina/química , Especificidade da Espécie , Células THP-1
2.
Bioorg Med Chem Lett ; 27(11): 2459-2464, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28434763

RESUMO

Leishmaniasis are infectious diseases caused by parasites of genus Leishmania that affect affects 12 million people in 98 countries mainly in Africa, Asia, and Latin America. Effective treatments for this disease are urgently needed. In this study, we present a computer-aided approach to investigate a set of 32 recently synthesized chalcone and chalcone-like compounds to act as antileishmanial agents. As a result, nine most promising compounds and three potentially inactive compounds were experimentally evaluated against Leishmania infantum amastigotes and mammalian cells. Four compounds exhibited EC50 in the range of 6.2-10.98µM. In addition, two compounds, LabMol-65 and LabMol-73, exhibited cytotoxicity in macrophages >50µM that resulted in better selectivity compared to standard drug amphotericin B. These two compounds also demonstrated low cytotoxicity and high selectivity towards Vero cells. The results of target fishing followed by homology modeling and docking studies suggest that these chalcone compounds could act in Leishmania because of their interaction with cysteine proteases, such as procathepsin L. Finally, we have provided structural recommendations for designing new antileishmanial chalcones.


Assuntos
Antiprotozoários/farmacologia , Chalconas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Leishmania infantum/efeitos dos fármacos , Nitrofuranos/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Anfotericina B/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Chalconas/síntese química , Chalconas/química , Chlorocebus aethiops , Simulação por Computador , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Bases de Dados Factuais , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Nitrofuranos/síntese química , Nitrofuranos/química , Piperazinas/síntese química , Piperazinas/química , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade , Células Vero
3.
Molecules ; 22(3)2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28282886

RESUMO

Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues (1-3) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes (Trypanosoma brucei PTR1-TbPTR1 and Leishmania major-LmPTR1) and parasites (Trypanosoma brucei and Leishmania infantum). A crystal structure of TbPTR1 in complex with compound 1 and the first crystal structures of LmPTR1-flavanone complexes (compounds 1 and 3) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Cromanos/química , Cromanos/farmacologia , Oxirredutases/antagonistas & inibidores , Antiparasitários/síntese química , Sítios de Ligação , Cromanos/síntese química , Ativação Enzimática/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxirredutases/química , Ligação Proteica , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
4.
Exp Parasitol ; 134(2): 235-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23541983

RESUMO

Members of the ATP-binding cassette (ABC)-type transporter superfamily have been implicated in multidrug resistance in malaria, and various mechanistic models have been postulated to explain their interaction with diverse antimalarial drugs. To gain insight into the pharmacological benefits of inhibiting ABC-type transporters in malaria chemotherapy, we investigated the in vitro chemosensitization potential of various P-glycoprotein inhibitors. A fluorescent chloroquine derivative was synthesized and used to assess the efflux dynamics of chloroquine in MDR and wild type Plasmodium falciparum parasites. This novel BODIPY-based probe accumulated in the digestive vacuole (DV) of CQ-sensitive parasites but less so in MDR cells. Pre-exposure of the MDR parasites to non-cytocidal concentrations of unlabeled chloroquine resulted in a diffused cytoplasmic retention of the probe whereas a similar treatment with the CQR-reversing agent, chlorpheniramine, resulted in DV accumulation. A diffused cytoplasmic distribution of the probe was also obtained following treatment with the P-gp specific inhibitors zosuquidar and tariquidar, whereas treatments with the tyrosine kinase inhibitors gefitinib or imatinib produced a partial accumulation within the DV. Isobologram analyses of the interactions between these inhibitors and the antimalarial drugs chloroquine, mefloquine, and artemisinin revealed distinct patterns of drug synergism, additivity and antagonism. Taken together, the data indicate that competitive tyrosine kinase and noncompetitive P-glycoprotein ATPase-specific inhibitors represent two new classes of chemosensitizing agents in malaria parasites, but caution against the indiscriminate use of these agents in antimalarial drug combinations.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Artemisininas/farmacologia , Benzamidas/farmacologia , Compostos de Boro/química , Cloroquina/farmacologia , Clorfeniramina/farmacologia , Dibenzocicloeptenos/farmacologia , Interações Medicamentosas , Resistência a Múltiplos Medicamentos , Eritrócitos/parasitologia , Corantes Fluorescentes/química , Gefitinibe , Humanos , Mesilato de Imatinib , Mefloquina/farmacologia , Piperazinas/farmacologia , Plasmodium falciparum/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Quinolinas/farmacologia
5.
Int J Parasitol Drugs Drug Resist ; 8(3): 430-439, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30293058

RESUMO

Tritryps diseases are devastating parasitic neglected infections caused by Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei subspecies. Together, these parasites affect more than 30 million people worldwide and cause high mortality and morbidity. Leishmaniasis comprises a complex group of diseases with clinical manifestation ranging from cutaneous lesions to systemic visceral damage. Antimonials, the first-choice drugs used to treat leishmaniasis, lead to high toxicity and carry significant contraindications limiting its use. Drug-resistant parasite strains are also a matter for increasing concern, especially in areas with very limited resources. The current scenario calls for novel and/or improvement of existing therapeutics as key research priorities in the field. Although several studies have shown advances in drug discovery towards leishmaniasis in recent years, key knowledge gaps in drug discovery pipelines still need to be addressed. In this review we discuss not only scientific and non-scientific bottlenecks in drug development, but also the central role of public-private partnerships for a successful campaign for novel treatment options against this devastating disease.


Assuntos
Descoberta de Drogas/métodos , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Animais , Antiprotozoários/efeitos adversos , Antiprotozoários/uso terapêutico , Antiprotozoários/toxicidade , Doença de Chagas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/estatística & dados numéricos , Descoberta de Drogas/legislação & jurisprudência , Descoberta de Drogas/estatística & dados numéricos , Descoberta de Drogas/tendências , Humanos , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia , Parcerias Público-Privadas , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Trypanosomatina/efeitos dos fármacos
6.
Eur J Med Chem ; 146: 423-434, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407968

RESUMO

Basing on a library of thiadiazole derivatives showing anti-trypanosomatidic activity, we have considered the thiadiazoles opened forms and reaction intermediates, thiosemicarbazones, as compounds of interest for phenotypic screening against Trypanosoma brucei (Tb), intracellular amastigote form of Leishmania infantum (Li) and Trypanosoma cruzi (Tc). Similar compounds have already shown interesting activity against the same organisms. The compounds were particularly effective against T. brucei and T. cruzi. Among the 28 synthesized compounds, the best one was (E)-2-(4-((3.4-dichlorobenzyl)oxy)benzylidene) hydrazinecarbothioamide (A14) yielding a comparable anti-parasitic activity against the three parasitic species (TbEC50 = 2.31 µM, LiEC50 = 6.14 µM, TcEC50 = 1.31 µM) and a Selectivity Index higher than 10 with respect to human macrophages, therefore showing a pan-anti-trypanosomatidic activity. (E)-2-((3'.4'-dimethoxy-[1.1'-biphenyl]-3-yl)methyle ne) hydrazinecarbothioamide (A12) and (E)-2-(4-((3.4-dichlorobenzyl)oxy)benzylidene)hydrazine carbothioamide (A14) were able to potentiate the anti-parasitic activity of methotrexate (MTX) when evaluated in combination against T. brucei, yielding a 6-fold and 4-fold respectively Dose Reduction Index for MTX. The toxicity profile against four human cell lines and a panel of in vitro early-toxicity assays (comprising hERG, Aurora B, five cytochrome P450 isoforms and mitochondrial toxicity) demonstrated the low toxicity for the thosemicarbazones class in comparison with known drugs. The results confirmed thiosemicarbazones as a suitable chemical scaffold with potential for the development of properly decorated new anti-parasitic drugs.


Assuntos
Antiprotozoários/farmacologia , Doença de Chagas/tratamento farmacológico , Tiossemicarbazonas/farmacologia , Trypanosoma/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
7.
ACS Omega ; 2(9): 5666-5683, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28983525

RESUMO

Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 µM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA