Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 61(7): 1348-1364, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32384163

RESUMO

Pollen lipids are essential for sexual reproduction, but our current knowledge regarding lipid dynamics in growing pollen tubes is still very scarce. Here, we report unique lipid composition and associated gene expression patterns during olive pollen germination. Up to 376 genes involved in the biosynthesis of all lipid classes, except suberin, cutin and lipopolysaccharides, are expressed in olive pollen. The fatty acid profile of olive pollen is markedly different compared with other plant organs. Triacylglycerol (TAG), containing mostly C12-C16 saturated fatty acids, constitutes the bulk of olive pollen lipids. These compounds are partially mobilized, and the released fatty acids enter the ß-oxidation pathway to yield acetyl-CoA, which is converted into sugars through the glyoxylate cycle during the course of pollen germination. Our data suggest that fatty acids are synthesized de novo and incorporated into glycerolipids by the 'eukaryotic pathway' in elongating pollen tubes. Phosphatidic acid is synthesized de novo in the endomembrane system during pollen germination and seems to have a central role in pollen tube lipid metabolism. The coordinated action of fatty acid desaturases FAD2-3 and FAD3B might explain the increase in linoleic and alpha-linolenic acids observed in germinating pollen. Continuous synthesis of TAG by the action of diacylglycerol acyltransferase 1 (DGAT1) enzyme, but not phosphoplipid:diacylglycerol acyltransferase (PDAT), also seems plausible. All these data allow for a better understanding of lipid metabolism during the olive reproductive process, which can impact, in the future, on the increase in olive fruit yield and, therefore, olive oil production.


Assuntos
Germinação , Metabolismo dos Lipídeos , Olea/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Transcriptoma , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glioxilatos/metabolismo
2.
PLoS One ; 7(2): e30878, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348028

RESUMO

Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future.


Assuntos
Pólen/química , Polimorfismo Genético , Profilinas/genética , Adaptação Fisiológica/genética , Alérgenos/química , Olea/imunologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA