Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559462

RESUMO

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Assuntos
Capuzes de RNA/genética , Infecções por Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Cães , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fases de Leitura Aberta/genética , Capuzes de RNA/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
2.
PLoS Pathog ; 17(8): e1009772, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352039

RESUMO

Understanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike. Mutations in spike impacting antibody and/or ACE2 binding are appearing worldwide, imposing the need to monitor SARS-CoV2 evolution and dynamics in the population. Determining signatures in SARS-CoV-2 that render the virus resistant to neutralizing antibodies is critical. We engineered 25 spike-pseudotyped lentiviruses containing individual and combined mutations in the spike protein, including all defining mutations in the variants of concern, to identify the effect of single and synergic amino acid substitutions in promoting immune escape. We confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent and post-immunization sera, particularly when combined with E484K and with mutations able to increase binding to ACE2, such as N501Y. Our analysis of synergic mutations provides a signature for hotspots for immune evasion and for targets of therapies, vaccines and diagnostics.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Substituição de Aminoácidos/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Linhagem Celular , Humanos , Evasão da Resposta Imune , Mutação/genética , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894933

RESUMO

Biomolecular condensates are crucial compartments within cells, relying on their material properties for function. They form and persist through weak, transient interactions, often undetectable by classical biochemical approaches. Hence, microscopy-based techniques have been the most reliable methods to detail the molecular mechanisms controlling their formation, material properties, and alterations, including dissolution or phase transitions due to cellular manipulation and disease, and to search for novel therapeutic strategies targeting biomolecular condensates. However, technical challenges in microscopy-based analysis persist. This paper discusses imaging, data acquisition, and analytical methodologies' advantages, challenges, and limitations in determining biophysical parameters explaining biomolecular condensate formation, dissolution, and phase transitions. In addition, we mention how machine learning is increasingly important for efficient image analysis, teaching programs what a condensate should resemble, aiding in the correlation and interpretation of information from diverse data sources. Influenza A virus forms liquid viral inclusions in the infected cell cytosol that serve as model biomolecular condensates for this study. Our previous work showcased the possibility of hardening these liquid inclusions, potentially leading to novel antiviral strategies. This was established using a framework involving live cell imaging to measure dynamics, internal rearrangement capacity, coalescence, and relaxation time. Additionally, we integrated thermodynamic characteristics by analysing fixed images through Z-projections. The aforementioned paper laid the foundation for this subsequent technical paper, which explores how different modalities in data acquisition and processing impact the robustness of results to detect bona fide phase transitions by measuring thermodynamic traits in fixed cells. Using solely this approach would greatly simplify screening pipelines. For this, we tested how single focal plane images, Z-projections, or volumetric analyses of images stained with antibodies or live tagged proteins altered the quantification of thermodynamic measurements. Customizing methodologies for different biomolecular condensates through advanced bioimaging significantly contributes to biological research and potential therapeutic advancements.


Assuntos
Vírus da Influenza A , Condensados Biomoleculares , Processamento de Imagem Assistida por Computador , Anticorpos , Biofísica
4.
J Cell Sci ; 130(23): 4038-4050, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061883

RESUMO

Influenza A is a rapidly evolving virus that is successful in provoking periodic epidemics and occasional pandemics in humans. Viral assembly is complex as the virus incorporates an eight-partite genome of RNA (in the form of viral ribonucleoproteins, vRNPs), and viral genome assembly - with its implications to public health - is not completely understood. It has previously been reported that vRNPs are transported to the cell surface on Rab11-containing vesicles by using microtubules but, so far, no molecular motor has been assigned to the process. Here, we have identified KIF13A, a member of the kinesin-3 family, as the first molecular motor to efficiently transport vRNP-Rab11 vesicles during infection with influenza A. Depletion of KIF13A resulted in reduced viral titers and less accumulation of vRNPs at the cell surface, without interfering with the levels of other viral proteins at sites of viral assembly. In addition, when overexpressed and following two separate approaches to displace vRNP-Rab11 vesicles, KIF13A increased levels of vRNP at the plasma membrane. Together, our results show that KIF13A plays an important role in the transport of influenza A vRNPs, a crucial step for viral assembly.This article has an associated First Person interview with the first author of the paper.


Assuntos
Vírus da Influenza A/patogenicidade , Cinesinas/metabolismo , Transporte Proteico/fisiologia , Ribonucleoproteínas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Genoma Viral/genética , Humanos , Microtúbulos/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia
5.
J Cell Sci ; 129(8): 1697-710, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26940915

RESUMO

Influenza A virus assembly is an unclear process, whereby individual virion components form an infectious particle. The segmented nature of the influenza A genome imposes a problem to assembly because it requires packaging of eight distinct RNA particles (vRNPs). It also allows genome mixing from distinct parental strains, events associated with influenza pandemic outbreaks. It is important to public health to understand how segmented genomes assemble, a process that is dependent on the transport of components to assembly sites. Previously, it has been shown that vRNPs are carried by recycling endosome vesicles, resulting in a change of Rab11 distribution. Here, we describe that vRNP binding to recycling endosomes impairs recycling endosome function, by competing for Rab11 binding with family-interacting proteins, and that there is a causal relationship between Rab11 ability to recruit family-interacting proteins and Rab11 redistribution. This competition reduces recycling sorting at an unclear step, resulting in clustering of single- and double-membraned vesicles. These morphological changes in Rab11 membranes are indicative of alterations in protein and lipid homeostasis during infection. Vesicular clustering creates hotspots of the vRNPs that need to interact to form an infectious particle.


Assuntos
Endossomos/metabolismo , Vírus da Influenza A/fisiologia , Fatores Estimuladores Upstream/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Transporte Proteico , Montagem de Vírus
6.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490342

RESUMO

The intricate interplay between maternal immune response to SARS-CoV-2 and the transfer of protective factors to the fetus remains unclear. By analyzing mother-neonate dyads from second and third trimester SARS-CoV-2 infections, our study shows that neutralizing antibodies (NAbs) are infrequently detected in cord blood. We uncovered that this is due to impaired IgG-NAb placental transfer in symptomatic infection and to the predominance of maternal SARS-CoV-2 NAbs of the IgA and IgM isotypes, which are prevented from crossing the placenta. Crucially, the balance between maternal antiviral response and transplacental transfer of IgG-NAbs appears to hinge on IL-6 and IL-10 produced in response to SARS-CoV-2 infection. In addition, asymptomatic maternal infection was associated with expansion of anti-SARS-CoV-2 IgM and NK cell frequency. Our findings identify a protective role for IgA/IgM-NAbs in gestational SARS-CoV-2 infection and open the possibility that the maternal immune response to SARS-CoV-2 infection might benefit the neonate in 2 ways, first by skewing maternal immune response toward immediate viral clearance, and second by endowing the neonate with protective mechanisms to curtail horizontal viral transmission in the critical postnatal period, via the priming of IgA/IgM-NAbs to be transferred by the breast milk and via NK cell expansion in the neonate.


Assuntos
COVID-19 , Gravidez , Recém-Nascido , Humanos , Feminino , SARS-CoV-2 , Placenta , Anticorpos Neutralizantes , Infecções Assintomáticas , Imunoglobulina A , Imunoglobulina M , Antivirais , Imunoglobulina G
7.
Elife ; 122023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37013374

RESUMO

In biological systems, liquid and solid-like biomolecular condensates may contain the same molecules but their behaviour, including movement, elasticity, and viscosity, is different on account of distinct physicochemical properties. As such, it is known that phase transitions affect the function of biological condensates and that material properties can be tuned by several factors including temperature, concentration, and valency. It is, however, unclear if some factors are more efficient than others at regulating their behaviour. Viral infections are good systems to address this question as they form condensates de novo as part of their replication programmes. Here, we used influenza A virus (IAV) liquid cytosolic condensates, AKA viral inclusions, to provide a proof of concept that liquid condensate hardening via changes in the valency of its components is more efficient than altering their concentration or the temperature of the cell. Liquid IAV inclusions may be hardened by targeting vRNP (viral ribonucleoprotein) interactions via the known NP (nucleoprotein) oligomerising molecule, nucleozin, both in vitro and in vivo without affecting host proteome abundance nor solubility. This study is a starting point for understanding how to pharmacologically modulate the material properties of IAV inclusions and may offer opportunities for alternative antiviral strategies.


Cells are organized into compartments that carry out specific functions. Envelope-like membranes enclose some of those compartments, while others remain unenclosed. The latter are called biomolecular condensates, and they can shift their physical states from a more liquid to a more solid form, which may affect how well they function. Temperature, molecular concentration and molecular interactions affect the physical state of condensates. Understanding what causes physical shifts in biomolecular condensates could have important implications for human health. For example, many viruses, including influenza, HIV, rabies, measles and the virus that causes COVID-19, SARS-CoV-2, use biomolecular condensates to multiply in cells. Changing the physical state of biomolecular condensates to one that hampers viruses' ability to multiply could be an innovative approach to treating viruses. Etibor et al. show that it is possible to harden condensates produced by influenza A virus. In the experiments, the researchers manipulated the temperature, molecular concentration and strength of connections between molecules in condensates created by influenza A-infected cells. Then, they measured their effects on the condensate's physical state. The experiments showed that using drugs that strengthen the bonds between molecules in condensates was the most effective strategy for hardening. Studies in both human cells and mice showed that using drugs to harden condensate in infected cells did not harm the cells or the animal and disabled the virus. The experiments provide preliminary evidence that using drugs to harden biomolecular condensates may be a potential treatment strategy for influenza A. More studies are necessary to test this approach to treating influenza A or other viruses that use condensates. If they are successful, the drug could add a new tool to the antiviral treatment toolbox.


Assuntos
Vírus da Influenza A , Viroses , Humanos , Replicação Viral , Ribonucleoproteínas , Antivirais
8.
PLoS One ; 17(6): e0268388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704567

RESUMO

BACKGROUND: Adults are being vaccinated against SARS-CoV-2 worldwide, but the longitudinal protection of these vaccines is uncertain, given the ongoing appearance of SARS-CoV-2 variants. Children remain largely unvaccinated and are susceptible to infection, with studies reporting that they actively transmit the virus even when asymptomatic, thus affecting the community. METHODS: We investigated if saliva is an effective sample for detecting SARS-CoV-2 RNA and antibodies in children, and associated viral RNA levels to infectivity. For that, we used a saliva-based SARS-CoV-2 RT-qPCR test, preceded or not by RNA extraction, in 85 children aged 10 years and under, admitted to the hospital regardless of COVID-19 symptomatology. Amongst these, 29 (63.0%) presented at least one COVID-19 symptom, 46 (54.1%) were positive for SARS-CoV-2 infection, 28 (32.9%) were under the age of 1, and the mean (SD) age was 3.8 (3.4) years. Saliva samples were collected up to 48 h after a nasopharyngeal swab-RT-qPCR test. RESULTS: In children aged 10 years and under, the sensitivity, specificity, and accuracy of saliva-RT-qPCR tests compared to NP swab-RT-qPCR were, respectively, 84.8% (71.8%-92.4%), 100% (91.0%-100%), and 91.8% (84.0%-96.6%) with RNA extraction, and 81.8% (68.0%-90.5%), 100% (91.0%-100%), and 90.4% (82.1%-95.0%) without RNA extraction. Rescue of infectious particles from saliva was limited to CT values below 26. In addition, we found significant IgM positive responses to SARS-CoV-2 in children positive for SARS-CoV-2 by NP swab and negative by saliva compared to other groups, indicating late infection onset (>7-10 days). CONCLUSIONS: Saliva is a suitable sample type for diagnosing children aged 10 years and under, including infants aged <1 year, even bypassing RNA extraction methods. Importantly, the detected viral RNA levels were significantly above the infectivity threshold in several samples. Further investigation is required to correlate SARS-CoV-2 RNA levels to viral transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/diagnóstico , Teste para COVID-19 , Criança , Técnicas de Laboratório Clínico/métodos , Humanos , Técnicas de Diagnóstico Molecular , Nasofaringe , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva/química , Manejo de Espécimes/métodos
9.
Cell Rep Med ; 2(12): 100468, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34873588

RESUMO

In view of the scarcity of data to guide decision making, we evaluated how BNT162b2 and mRNA-1273 vaccines affect the immune response in lactating women and the protective profile of breastmilk. Compared with controls, lactating women had a higher frequency of circulating RBD memory B cells and higher anti-RBD antibody titers but similar neutralizing capacity. We show that upon vaccination, immune transfer to breastmilk occurs through a combination of anti-spike secretory IgA (SIgA) antibodies and spike-reactive T cells. Although we found that the concentration of anti-spike IgA in breastmilk might not be sufficient to directly neutralize SARS-CoV-2, our data suggest that cumulative transfer of IgA might provide the infant with effective neutralization capacity. Our findings put forward the possibility that breastmilk might convey both immediate (through anti-spike SIgA) and long-lived (via spike-reactive T cells) immune protection to the infant. Further studies are needed to address this possibility and to determine the functional profile of spike T cells.


Assuntos
Vacinas contra COVID-19/imunologia , Imunoglobulina A Secretora/imunologia , Leite Humano/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Imunidade Materno-Adquirida , Lactação/imunologia , Células B de Memória/imunologia , Vacinação , Vacinas de mRNA/imunologia
10.
PLoS Pathog ; 4(10): e1000177, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18846211

RESUMO

The pathogenesis of persistent viral infections depends critically on long-term viral loads. Yet what determines these loads is largely unknown. Here, we show that a single CD8+ T cell epitope sets the long-term latent load of a lymphotropic gamma-herpesvirus, Murid herpesvirus-4 (MuHV-4). The MuHV-4 M2 latency gene contains an H2-Kd -restricted T cell epitope, and wild-type but not M2(-) MuHV-4 was limited to very low level persistence in H2d mice. Mutating the epitope anchor residues increased viral loads and re-introducing the epitope reduced them again. Like the Kaposi's sarcoma-associated herpesvirus K1, M2 shows a high frequency of non-synonymous mutations, suggesting that it has been selected for epitope loss. In vivo competition experiments demonstrated directly that epitope presentation has a major impact on viral fitness. Thus, host MHC class I and viral epitope expression interact to set the long-term virus load.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Infecções por Herpesviridae/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Rhadinovirus/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Linfócitos T CD8-Positivos/virologia , Epitopos de Linfócito T/genética , Regulação da Expressão Gênica/imunologia , Infecções por Herpesviridae/genética , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Células NIH 3T3 , Rhadinovirus/genética , Infecções Tumorais por Vírus/genética , Carga Viral
11.
Nat Commun ; 10(1): 1629, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967547

RESUMO

Influenza A virus has an eight-partite RNA genome that during viral assembly forms a complex containing one copy of each RNA. Genome assembly is a selective process driven by RNA-RNA interactions and is hypothesized to lead to discrete punctate structures scattered through the cytosol. Here, we show that contrary to the accepted view, formation of these structures precedes RNA-RNA interactions among distinct viral ribonucleoproteins (vRNPs), as they assemble in cells expressing only one vRNP type. We demonstrate that these viral inclusions display characteristics of liquid organelles, segregating from the cytosol without a delimitating membrane, dynamically exchanging material and adapting fast to environmental changes. We provide evidence that viral inclusions develop close to endoplasmic reticulum (ER) exit sites, depend on continuous ER-Golgi vesicular cycling and do not promote escape to interferon response. We propose that viral inclusions segregate vRNPs from the cytosol and facilitate selected RNA-RNA interactions in a liquid environment.


Assuntos
Retículo Endoplasmático/virologia , Vírus da Influenza A/fisiologia , Influenza Humana/patologia , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Células A549 , Animais , Citosol/metabolismo , Citosol/virologia , Cães , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Ligação Proteica , RNA Viral/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
12.
Nucleic Acids Res ; 34(Database issue): D446-51, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381908

RESUMO

We present the YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT; www.yeastract.com) database, a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. This database is a repository of 12 346 regulatory associations between transcription factors and target genes, based on experimental evidence which was spread throughout 861 bibliographic references. It also includes 257 specific DNA-binding sites for more than a hundred characterized transcription factors. Further information about each yeast gene included in the database was obtained from Saccharomyces Genome Database (SGD), Regulatory Sequences Analysis Tools and Gene Ontology (GO) Consortium. Computational tools are also provided to facilitate the exploitation of the gathered data when solving a number of biological questions as exemplified in the Tutorial also available on the system. YEASTRACT allows the identification of documented or potential transcription regulators of a given gene and of documented or potential regulons for each transcription factor. It also renders possible the comparison between DNA motifs, such as those found to be over-represented in the promoter regions of co-regulated genes, and the transcription factor-binding sites described in the literature. The system also provides an useful mechanism for grouping a list of genes (for instance a set of genes with similar expression profiles as revealed by microarray analysis) based on their regulatory associations with known transcription factors.


Assuntos
Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Biologia Computacional , DNA Fúngico/química , DNA Fúngico/metabolismo , Internet , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Software , Transcrição Gênica , Interface Usuário-Computador
13.
Viruses ; 7(9): 5066-83, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26393640

RESUMO

Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and defining their functions will ultimately provide additional insights into the virulence and persistence of infections.


Assuntos
Exossomos/metabolismo , Biogênese de Organelas , Viroses/patologia , Viroses/fisiopatologia , Animais , Regulação da Expressão Gênica , Humanos
14.
PLoS One ; 10(11): e0142540, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26544979

RESUMO

Establishment of persistent infection in memory B cells by murid herpesvirus-4 (MuHV-4) depends on the proliferation of latently infected germinal center B cells, for which T cell help is essential. Whether the virus is capable of modulating B-T helper cell interaction for its own benefit is still unknown. Here, we investigate if the MuHV-4 latency associated M2 protein, which assembles multiprotein complexes with B cell signaling proteins, plays a role. We observed that M2 led to the upregulation of adhesion and co-stimulatory molecules in transduced B cell lines. In an MHC-II restricted OVA peptide-specific system, M2 polarized to the B-T helper contact zone. Furthermore, it promoted B cell polarization, as demonstrated by the increased proximity of the B cell microtubule organizing center to the interface. Consistent with these data, M2 promoted the formation of B-T helper cell conjugates. In an in vitro competition assay, this translated into a competitive advantage, as T cells preferentially conjugated with M2-expressing B cells. However, expression of M2 alone in B cells was not sufficient to lead to T cell activation, as it only occurred in the presence of specific peptide. Taken together, these findings support that M2 promotes the formation of B-T helper cell conjugates. In an in vivo context this may confer a competitive advantage to the infected B cell in acquisition of T cell help and initiation of a germinal center reaction, hence host colonization.


Assuntos
Linfoma de Células B/imunologia , Linfoma de Células B/virologia , Rhadinovirus/patogenicidade , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Proteínas Virais/imunologia , Animais , Moléculas de Adesão Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Polaridade Celular , Proliferação de Células , Interações Hospedeiro-Patógeno , Memória Imunológica , Ativação Linfocitária , Linfoma de Células B/patologia , Camundongos , Ovalbumina/imunologia , Fragmentos de Peptídeos/imunologia , Rhadinovirus/imunologia , Rhadinovirus/fisiologia , Linfócitos T Auxiliares-Indutores/patologia , Latência Viral
16.
J Gen Virol ; 90(Pt 5): 1202-1214, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19264603

RESUMO

Antibodies readily neutralize acute, epidemic viruses, but are less effective against more indolent pathogens such as herpesviruses. Murid herpesvirus 4 (MuHV-4) provides an accessible model for tracking the fate of antibody-exposed gammaherpesvirus virions. Glycoprotein L (gL) plays a central role in MuHV-4 entry: it allows gH to bind heparan sulfate and regulates fusion-associated conformation changes in gH and gB. However, gL is non-essential: heparan sulfate binding can also occur via gp70, and the gB-gH complex alone seems to be sufficient for membrane fusion. Here, we investigated how gL affects the susceptibility of MuHV-4 to neutralization. Immune sera neutralized gL(-) virions more readily than gL(+) virions, chiefly because heparan sulfate binding now depended on gp70 and was therefore easier to block. However, there were also post-binding effects. First, the downstream, gL-independent conformation of gH became a neutralization target; gL normally prevents this by holding gH in an antigenically distinct heterodimer until after endocytosis. Second, gL(-) virions were more vulnerable to gB-directed neutralization. This covered multiple epitopes and thus seemed to reflect a general opening up of the gH-gB entry complex, which gL again normally restricts to late endosomes. gL therefore limits MuHV-4 neutralization by providing redundancy in cell binding and by keeping key elements of the virion fusion machinery hidden until after endocytosis.


Assuntos
Anticorpos Antivirais/imunologia , Glicoproteínas/imunologia , Rhadinovirus/imunologia , Rhadinovirus/metabolismo , Proteínas do Envelope Viral/imunologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Células Epiteliais , Feminino , Fibroblastos , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica
17.
J Gen Virol ; 90(Pt 1): 21-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19088269

RESUMO

Luciferase-based imaging allows a global view of microbial pathogenesis. We applied this technique to gammaherpesvirus infection by inserting a luciferase expression cassette into the genome of murine herpesvirus-4 (MuHV-4). The recombinant virus strongly expressed luciferase in lytically infected cells without significant attenuation. We used it to compare different routes of virus inoculation. After intranasal infection of anaesthetized mice, luciferase was expressed in the nose and lungs for 7-10 days and in lymphoid tissue, most consistently the superficial cervical lymph nodes, for up to 30 days. Gastrointestinal infection was not observed. Intraperitoneal infection was very different to intranasal, with strong luciferase expression in the liver, kidneys, intestines, reproductive tract and spleen, but none in the nose or lungs. The nose has not previously been identified as a site of MuHV-4 infection. After intranasal infection of non-anaesthetized mice, it was the only site of non-lymphoid luciferase expression. Nevertheless, lymphoid colonization and persistence were still established, even at low inoculation doses. In contrast, virus delivered orally was very poorly infectious. Inoculation route therefore had a major impact on pathogenesis. Low dose intranasal infection without anaesthesia seems most likely to mimic natural transmission, and may therefore be particularly informative about normal viral gene functions.


Assuntos
Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Rhadinovirus/crescimento & desenvolvimento , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia , Imagem Corporal Total , Estruturas Animais/virologia , Animais , Feminino , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
18.
PLoS One ; 3(2): e1654, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18301737

RESUMO

To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate the signaling machinery of the host B-cell.


Assuntos
Gammaherpesvirinae/química , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Virais/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Transdução de Sinais , Proteínas da Matriz Viral , Latência Viral
19.
FEMS Yeast Res ; 6(8): 1130-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17156010

RESUMO

The expression of the transcription regulator Pdr1p and its target genes PDR5 and TPO1 is required for Saccharomyces cerevisiae adaptation and resistance to artesunate, a promising antimalarial drug, also active against tumour cells and viruses. PDR5 and TPO1 encode plasma membrane multidrug transporters of the ATP-binding cassette and the major facilitator superfamilies, respectively. The transcriptional activation of TPO1 (10-fold) and PDR5 (13-fold) was registered after 30 min of exposure of the unadapted yeast population to acute artesunate-induced stress, being significantly reduced in the absence of Pdr1p and abolished in the absence of Pdr1p and Pdr3p. Maximum TPO1 mRNA levels were rapidly reduced to basal values following adaptation of the yeast population to artesunate, while high PDR5 levels were maintained during drug-stressed exponential growth.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Farmacorresistência Fúngica/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Sesquiterpenos/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adaptação Fisiológica , Antiporters , Artesunato , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Cátions Orgânicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
20.
Mol Microbiol ; 59(5): 1485-505, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16468990

RESUMO

In the yeast Saccharomyces cerevisiae starvation for nitrogen on a glucose-containing medium causes entrance into G0 and downregulation of all targets of the PKA pathway. Re-addition of a nitrogen source in the presence of glucose causes rapid activation of trehalase and other PKA targets. Trehalase activation upon ammonium re-supplementation is dependent on PKA activity, but not on its regulatory subunit nor is it associated with an increase in cAMP. In nitrogen-starved cells, ammonium transport and activation of trehalase are most active in strains expressing either the Mep2 or Mep1 ammonium permease, as opposed to Mep3. The non-metabolizable ammonium analogue, methylamine, also triggers activation of trehalase when transported by Mep2 but not when taken up by diffusion. Inhibition of ammonium incorporation into metabolism did not prevent signalling. Extensive site-directed mutagenesis of Mep2 showed that transport and signalling were generally affected in a similar way, although they could be separated partially by specific mutations. Our results suggest an ammonium permease-based sensing mechanism for rapid activation of the PKA pathway. Mutagenesis of Asn246 to Ala in Mep2 abolished transport and signalling with methylamine but had no effect with ammonium. The plant AtAmt1;1, AtAmt1;2, AtAmt1;3 and AtAmt2 ammonium transporters sustained transport and trehalase activation to different extents. Specific mutations in Mep2 affected the activation of trehalase differently from induction of pseudohyphal differentiation. We also show that Mep permease involvement in PKA control is different from their role in haploid invasive growth, in which Mep1 sustains and Mep2 inhibits, in a way independent of the ammonium level in the medium.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte de Cátions/genética , AMP Cíclico/metabolismo , Diploide , Haploidia , Metilaminas/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas/metabolismo , Compostos de Amônio Quaternário/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA