Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 125(5): e30565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591469

RESUMO

Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.


Assuntos
Adipogenia , Diferenciação Celular , Fibronectinas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
2.
J Biomed Sci ; 31(1): 59, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835012

RESUMO

Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.


Assuntos
Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Redes Reguladoras de Genes , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica
3.
Cell Commun Signal ; 22(1): 122, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351010

RESUMO

Cells that are exposed to harmful genetic damage, either from internal or external sources, may undergo senescence if they are unable to repair their DNA. Senescence, characterized by a state of irreversible growth arrest, can spread to neighboring cells through a process known as the senescence-associated secretory phenotype (SASP). This phenomenon contributes to both aging and the development of cancer. The SASP comprises a variety of factors that regulate numerous functions, including the induction of secondary senescence, modulation of immune system activity, remodeling of the extracellular matrix, alteration of tissue structure, and promotion of cancer progression. Identifying key factors within the SASP is crucial for understanding the underlying mechanisms of senescence and developing effective strategies to counteract cellular senescence. Our research has specifically focused on investigating the role of IGFBP5, a component of the SASP observed in various experimental models and conditions.Through our studies, we have demonstrated that IGFBP5 actively contributes to promoting senescence and can induce senescence in neighboring cells. We have gained valuable insights into the mechanisms through which IGFBP5 exerts its pro-senescence effects. These mechanisms include its release following genotoxic stress, involvement in signaling pathways mediated by reactive oxygen species and prostaglandins, internalization via specialized structures called caveolae, and interaction with a specific protein known as RARα. By uncovering these mechanisms, we have advanced our understanding of the intricate role of IGFBP5 in the senescence process. The significance of IGFBP5 as a pro-aging factor stems from an in vivo study we conducted on patients undergoing Computer Tomography analysis. In these patients, we observed an elevation in circulating IGFBP5 levels in response to radiation-induced organismal stress.Globally, our findings highlight the potential of IGFBP5 as a promising therapeutic target for age-related diseases and cancer.


Assuntos
Senescência Celular , Neoplasias , Humanos , Envelhecimento , Células Cultivadas , Senescência Celular/genética , Neoplasias/metabolismo , Transdução de Sinais/genética
4.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396698

RESUMO

Cells and extracts derived from adipose tissue are gaining increasing attention not only in plastic surgery and for aesthetic purposes but also in regenerative medicine. The ability of hyaluronan (HA) to support human adipose stromal cell (hASC) viability and differentiation has been investigated. However, the compatibility of adipose tissue with HA-based formulation in terms of biophysical and rheological properties has not been fully addressed, although it is a key feature for tissue integration and in vivo performance. In this study, the biophysical and biochemical properties of highly concentrated (45 mg/mL) high/low-molecular-weight HA hybrid cooperative complex were assessed with a further focus on the potential application in adipose tissue augmentation/regeneration. Specifically, HA hybrid complex rheological behavior was observed in combination with different adipose tissue ratios, and hyaluronidase-catalyzed degradation was compared to that of a high-molecular-weight HA (HHA). Moreover, the HA hybrid complex's ability to induce in vitro hASCs differentiation towards adipose phenotype was evaluated in comparison to HHA, performing Oil Red O staining and analyzing gene/protein expression of PPAR-γ, adiponectin, and leptin. Both treatments supported hASCs differentiation, with the HA hybrid complex showing better results. These outcomes may open new frontiers in regenerative medicine, supporting the injection of highly concentrated hybrid formulations in fat compartments, eventually enhancing residing staminal cell differentiation and improving cell/growth factor persistence towards tissue regeneration districts.


Assuntos
Ácido Hialurônico , Medicina Regenerativa , Humanos , Ácido Hialurônico/química , Tecido Adiposo/metabolismo , Adipócitos , Diferenciação Celular , Células Estromais , Células Cultivadas
5.
Cell Commun Signal ; 21(1): 262, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770897

RESUMO

DNA damage resulting from genotoxic injury can initiate cellular senescence, a state characterized by alterations in cellular metabolism, lysosomal activity, and the secretion of factors collectively known as the senescence-associated secretory phenotype (SASP). Senescence can have beneficial effects on our bodies, such as anti-cancer properties, wound healing, and tissue development, which are attributed to the SASP produced by senescent cells in their intermediate stages. However, senescence can also promote cancer and aging, primarily due to the pro-inflammatory activity of SASP.Studying senescence is complex due to various factors involved. Genotoxic stimuli cause random damage to cellular macromolecules, leading to variations in the senescent phenotype from cell to cell, despite a shared program. Furthermore, senescence is a dynamic process that cannot be analyzed as a static endpoint, adding further complexity.Investigating SASP is particularly intriguing as it reveals how a senescence process triggered in a few cells can spread to many others, resulting in either positive or negative consequences for health. In our study, we conducted a meta-analysis of the protein content of SASP obtained from different research groups, including our own. We categorized the collected omic data based on: i) cell type, ii) harmful agent, and iii) senescence stage (early and late senescence).By employing Gene Ontology and Network analysis on the omic data, we identified common and specific features of different senescent phenotypes. This research has the potential to pave the way for the development of new senotherapeutic drugs aimed at combating the negative consequences associated with the senescence process. Video Abstract.


Assuntos
Neoplasias , Senoterapia , Humanos , Secretoma , Envelhecimento , Senescência Celular , Neoplasias/metabolismo , Fenótipo
6.
Parasitology ; 150(12): 1089-1095, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37929599

RESUMO

Environmental and anthropogenic factors may significantly affect the diffusion of wild animals, enhancing the interface of human­wildlife interactions and driving the spread of pathogens and vector-borne diseases between animals and humans. However, in the last decade, the involvement of citizens in scientific research (the so-called citizen science approach, henceforth abbreviated as CS) provided a network of large-scale and cost-effective surveillance programmes of wildlife populations and their related arthropod species. Therefore, this review aims to illustrate different methods and tools used in CS studies, by arguing the main advantages and considering the limitations of this approach. The CS approach has proven to be an effective method for establishing density and distribution of several wild animal species, in urban, peri-urban and rural environments, as well a source of information regarding vector­host associations between arthropods and wildlife. Extensive efforts are recommended to motivate citizens to be involved in scientific projects to improve both their and our knowledge of the ecology and diseases of wildlife. Following the One Health paradigm, collaborative and multidisciplinary models for the surveillance of wildlife and related arthropod species should be further developed by harnessing the potentiality of the CS approach.


Assuntos
Artrópodes , Ciência do Cidadão , Animais , Humanos , Animais Selvagens , Ecologia
7.
FASEB J ; 35(6): e21662, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34046935

RESUMO

Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.


Assuntos
Antioxidantes/metabolismo , Senescência Celular , Diabetes Gestacional/fisiopatologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/patologia , Modelos Biológicos , Estresse Oxidativo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Gravidez , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Environ Res ; 214(Pt 4): 114088, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35973457

RESUMO

Humans are exposed to environmental microplastic (MPs) that can be frequent in surrounding environment. The mesenchymal stromal cells are a heterogeneous population, which contain fibroblasts and stromal cells, progenitor cells and stem cells. They are part of the stromal component of most tissue and organs in our organisms. Any injury to their functions may impair tissue renewal and homeostasis. We evaluated the effects of different size MPs that could be present in water bottles on human bone marrow mesenchymal stromal cells (BMMSCs) and adipose mesenchymal stromal cells (AMSCs). MPs of polyethylene terephthalate (MPs-PET) (<1 µm and <2.6 µm) were tested in this study. PET treatments induced a reduction in proliferating cells (around 30%) associated either with the onset of senescence or increase in apoptosis. The AMSCs and BMMSCs exposed to PET showed an alteration of differentiation potential. AMSCs remained in an early stage of adipocyte differentiation as shown by high levels of mRNA for Peroxisome Proliferator Activated Receptor Gamma (PPARG) (7.51 vs 1.00) and reduction in Lipoprotein Lipase (LPL) mRNA levels (0.5 vs 1.0). A loss of differentiation capacity was also observed for the osteocyte phenotype in BMMSCs. In particular, we observed a reduction in Bone Gamma-Carboxy glutamate Protein (BGLAP) (0.4 for PET1 and 0.6 for PET2.6 vs 0.1 CTRL) and reduction in Osteopontin (SPP1) (0.3 for PET 1 and 0.64 for PET 2.6 vs 0.1 CTRL). This pioneering mesenchymal cell response study demonstrated that environmental microplastic could be bioavailable for cell uptake and may further lead to irreversible diseases.


Assuntos
Células-Tronco Mesenquimais , Plásticos , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Microplásticos/toxicidade , Plásticos/metabolismo , Plásticos/toxicidade , RNA Mensageiro/metabolismo
9.
Parasitol Res ; 121(6): 1683-1689, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35362744

RESUMO

Eucoleus garfiai (syn. Capillaria garfiai) is a nematode infecting lingual tissue of domestic and wild swine. Prevalence data for this parasite are scant and often related to accidental findings, occurring only in Japan and a few European countries. In this study, an epidemiological survey was performed in order to identify E. garfiai in wild boar from the Campania region, southern Italy. A total of 153 wild boar carcasses were inspected over the course of two hunting seasons (2019-2020). Histological examinations were performed on tongue samples fixed and stained with haematoxylin and eosin. The scraping of dorsal tongue tissue was carried out to collect adult worms for parasitological examination. Out of 153 wild boars, 40 (26.1%, 95% CI: 19.8-33.6%) tested positive for helminths and/or eggs in tongue tissues. Parasites were identified morphologically and identification was confirmed by molecular analysis of the 18S rRNA gene, showing a 99% nucleotide match with E. garfiai sequences available in literature. No statistically significant differences were found according to age, sex nor hunting province. Our findings agree with previous histopathological data confirming the low pathogenic impact of this nematode. The present study represents the first report of E. garfiai in wild boar from Italy.


Assuntos
Helmintos , Doenças dos Suínos , Animais , Capillaria , Coma , Itália/epidemiologia , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/parasitologia
10.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293005

RESUMO

Two different types of adipose depots can be observed in mammals: white adipose tissue (WAT) and brown adipose tissue (BAT). The primary role of WAT is to deposit surplus energy in the form of triglycerides, along with many metabolic and hormonal activities; as thermogenic tissue, BAT has the distinct characteristic of using energy and glucose consumption as a strategy to maintain the core body temperature. Under specific stimuli-such as exercise, cold exposure, and drug treatment-white adipocytes can utilize their extraordinary flexibility to transdifferentiate into brown-like cells, called beige adipocytes, thereby acquiring new morphological and physiological characteristics. For this reason, the process is identified as the 'browning of WAT'. We evaluated the ability of some drugs, including GW501516, sildenafil, and rosiglitazone, to induce the browning process of adult white adipocytes obtained from differentiated mesenchymal stromal cells (MSCs). In addition, we broadened our investigation by evaluating the potential browning capacity of IRISIN, a myokine that is stimulated by muscular exercises. Our data indicate that IRISIN was effective in promoting the browning of white adipocytes, which acquire increased expression of UCP1, increased mitochondrial mass, and modification in metabolism, as suggested by an increase of mitochondrial oxygen consumption, primarily in presence of glucose as a nutrient. These promising browning agents represent an appealing focus in the therapeutic approaches to counteracting metabolic diseases and their associated obesity.


Assuntos
Adipócitos Brancos , Células-Tronco Mesenquimais , Animais , Adipócitos Brancos/metabolismo , Fibronectinas/metabolismo , Rosiglitazona/farmacologia , Citrato de Sildenafila/farmacologia , Medula Óssea/metabolismo , Metabolismo Energético , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Células-Tronco Mesenquimais/metabolismo , Glucose/metabolismo , Triglicerídeos/metabolismo , Mamíferos/metabolismo
11.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803589

RESUMO

During their life span, cells have two possible states: a non-cycling, quiescent state (G0) and a cycling, activated state. Cells may enter a reversible G0 state of quiescence or, alternatively, they may undergo an irreversible G0 state. The latter may be a physiological differentiation or, following a stress event, a senescent status. Discrimination among the several G0 states represents a significant investigation, since quiescence, differentiation, and senescence are progressive phenomena with intermediate transitional stages. We used the expression of Ki67, RPS6, and beta-galactosidase to identify healthy cells that progressively enter and leave quiescence through G0-entry, G0 and G0-alert states. We then evaluated how cells may enter senescence following a genotoxic stressful event. We identified an initial stress stage with the expression of beta-galactosidase and Ki67 proliferation marker. Cells may recover from stress events or become senescent passing through early and late senescence states. Discrimination between quiescence and senescence was based on the expression of RPS6, a marker of active protein synthesis that is present in senescent cells but absent in quiescent cells. Even taking into account that fixed G0 states do not exist, our molecular algorithm may represent a method for identifying turning points of G0 transitional states that continuously change.


Assuntos
Ciclo Celular , Senescência Celular , Antígeno Ki-67/metabolismo , Proteína S6 Ribossômica/metabolismo , Estresse Fisiológico , beta-Galactosidase/metabolismo , Humanos , Modelos Biológicos , Fenótipo
12.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769049

RESUMO

Several investigations on senescence and its causative role in aging have underscored the importance of developing senotherapeutics, a field focused on killing senescent cells and/or preventing their accumulation within tissues. Using polyphenols in counteracting senescence may facilitate the development of senotherapeutics given their presence in the human diet, their confirmed tolerability and absence of severe side effects, and their role in preventing senescence and inducing the death of senescent cells. Against that background, we evaluated the effect of piceatannol, a natural polyphenol, on the senescence of mesenchymal stromal cells (MSCs), which play a key role in the body's homeostasis. Among our results, piceatannol reduced the number of senescent cells both after genotoxic stress that induced acute senescence and in senescent replicative cultures. Such senotherapeutics activity, moreover, promoted the recovery of cell proliferation and the stemness properties of MSCs. Altogether, our findings demonstrate piceatannol's effectiveness in counteracting senescence by targeting its associated pathways and detecting and affecting P53-dependent and P53-independent senescence. Our study thus suggests that, given piceatannol's various mechanisms to accomplish its pleiotropic activities, it may be able to counteract any senescent phenotypes.


Assuntos
Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Senoterapia/farmacologia , Estilbenos/farmacologia , Envelhecimento/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos
13.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808491

RESUMO

The bioactive form of vitamin D, 1,25-dihydroxyvitamin D (1,25D3), exerts immunomodulatory actions resulting in neuroprotective effects potentially useful against neurodegenerative and autoimmune diseases. In fact, vitamin D deficiency status has been correlated with painful manifestations associated with different pathological conditions. In this study, we have investigated the effects of vitamin D deficiency on microglia cells, as they represent the main immune cells responsible for early defense at central nervous system (CNS), including chronic pain states. For this purpose, we have employed a model of low vitamin D intake during gestation to evaluate possible changes in primary microglia cells obtained from postnatal day(P)2-3 pups. Afterwards, pain measurement and microglia morphological analysis in the spinal cord level and in brain regions involved in the integration of pain perception were performed in the parents subjected to vitamin D restriction. In cultured microglia, we detected a reactive-activated and proliferative-phenotype associated with intracellular reactive oxygen species (ROS) generation. Oxidative stress was closely correlated with the extent of DNA damage and increased ß-galactosidase (B-gal) activity. Interestingly, the incubation with 25D3 or 1,25D3 or palmitoylethanolamide, an endogenous ligand of peroxisome proliferator-activated-receptor-alpha (PPAR-α), reduced most of these effects. Morphological analysis of ex-vivo microglia obtained from vitamin-D-deficient adult mice revealed an increased number of activated microglia in the spinal cord, while in the brain microglia appeared in a dystrophic phenotype. Remarkably, activated (spinal) or dystrophic (brain) microglia were detected in a prominent manner in females. Our data indicate that vitamin D deficiency produces profound modifications in microglia, suggesting a possible role of these cells in the sensorial dysfunctions associated with hypovitaminosis D.


Assuntos
Dor Crônica/etiologia , Microglia/efeitos dos fármacos , Deficiência de Vitamina D/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Dor Crônica/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Vitamina D/metabolismo , Vitamina D/farmacologia , Deficiência de Vitamina D/fisiopatologia
14.
J Cell Physiol ; 235(5): 4256-4267, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31612492

RESUMO

No study has investigated the interaction of Resolvin D1 (RvD1) with mitochondrial damage of retinal cells caused by diabetes. This study aims to investigate the effects of RvD1 (50 nM) on morphological and biochemical indicators of mitochondrial damage in primary retinal cells exposed to 30 mM d-glucose high glucose (HG). HG-cells exhibited photoreceptor damage characterized by short and small mitochondria with prevalent mitochondrial disruption, fragmentation, and aggregation. The cells had low mitochondrial transporters TIMM44 and TOMM40, Connexin 43, NAD/NADH ratio, and ATP levels, whereas increased cytosolic cytochrome c. Moreover, they expressed high cytosolic metalloproteinase matrix metallopeptidase 9 (MMP-9) and MMP-2 activity. HG-cells treated with RvD1 (50 nM) showed reduced reactive oxygen species levels, improved mitochondrial morphology and function, promoted mitochondrial DNA repair by OGG1, and reduced cell apoptosis and metalloproteinase activity. Therefore, RvD1 induces protection from high glucose-load to the retinal cell and promotes their survival by decreasing cytosolic MMP and mitochondrial damage.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Glucose/toxicidade , Mitocôndrias/efeitos dos fármacos , Células Fotorreceptoras/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Cell Commun Signal ; 18(1): 118, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727501

RESUMO

BACKGROUND: The term mesenchymal stromal cells (MSCs) designates an assorted cell population comprised of stem cells, progenitor cells, fibroblasts, and stromal cells. MSCs contribute to the homeostatic maintenance of many organs through paracrine and long-distance signaling. Tissue environment, in both physiological and pathological conditions, may affect the intercellular communication of MSCs. METHODS: We performed a secretome analysis of MSCs isolated from subcutaneous adipose tissue (sWAT) and visceral adipose tissue (vWAT), and from bone marrow (BM), of normal and obese mice. RESULTS: The MSCs isolated from tissues of healthy mice share a common core of released factors: components of cytoskeletal and extracellular structures; regulators of basic cellular functions, such as protein synthesis and degradation; modulators of endoplasmic reticulum stress; and counteracting oxidative stress. It can be hypothesized that MSC secretome beneficially affects target cells by the horizontal transfer of many released factors. Each type of MSC may exert specific signaling functions, which could be determined by looking at the many factors that are exclusively released from every MSC type. The vWAT-MSCs release factors that play a role in detoxification activity in response to toxic substances and drugs. The sWAT-MSC secretome contains proteins involved in in chondrogenesis, osteogenesis, and angiogenesis. Analysis of BM-MSC secretome revealed that these cells exert a signaling function by remodeling extracellular matrix structures, such as those containing glycosaminoglycans. Obesity status profoundly modified the secretome content of MSCs, impairing the above-described activity and promoting the release of inflammatory factors. CONCLUSION: We demonstrated that the content of MSC secretomes depends on tissue microenvironment and that pathological condition may profoundly alter its composition. Video abstract.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Especificidade de Órgãos , Animais , Antígenos/metabolismo , Plaquetas/fisiologia , Degranulação Celular , Dieta Hiperlipídica , Ontologia Genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Biológicos , Solubilidade
16.
Parasitology ; 147(14): 1636-1642, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32829716

RESUMO

Taenia hydatigena cysticercosis is a widespread parasitic disease of wild and domestic animals. In Europe, the increase in wild boar population may potentially contribute to the spread of this parasitic infection. To determine the occurrence of cysticerci (metacestodes) in wild boar population from southern Italy, carcasses were inspected during three hunting seasons (2016-2018). Out of 3363 wild boar examined, 229 (6.8%) harboured cysticerci with 188 (82.1%) infected by a single cyst, vs 41 (17.9%) boars having more than one. Most of the positive animals (187; 81.7%) showed cysts on the liver, whereas a multiple localization of cysticerci was reported in 10 (4.4%) wild boar. The total number of cysts retrieved from positive animals was 301 (average 1.3). Molecular analysis revealed the occurrence of a common haplotype (Hap 8) shared between wild boar and domestic animals. Our findings suggest the presence of a T. hydatigena semi-domestic life cycle in which wild boar may play an important role, due to a large number of offal available to hunting dogs, wolves and foxes during hunting seasons. Hunters may be players in the management of wildlife species to control and prevent the circulation of parasitic diseases.


Assuntos
Cisticercose/veterinária , Doenças dos Suínos/epidemiologia , Taenia/fisiologia , Animais , Cisticercose/epidemiologia , Cisticercose/parasitologia , Feminino , Variação Genética , Itália/epidemiologia , Masculino , Dinâmica Populacional , Prevalência , Sus scrofa , Suínos , Doenças dos Suínos/parasitologia , Taenia/genética
18.
Parasitol Res ; 118(7): 2193-2201, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31134335

RESUMO

The larval stage of the species complex Echinococcus granulosus sensu lato (s.l.) is the cause of a widespread zoonotic disease known as cystic echinococcosis (CE). The disease is highly prevalent in southern Italy and represents a serious public health issue. The main aim of this study was to characterize E. granulosus s.l. genotypes from wild boar on a continental area of Italy (Campania region), using recently developed mtDNA markers of nad2 and nad5 for reliable identification of different genotypes. Here, nad5 (680 bp) allowed for a clear identification of G1 and G3, whereas a combination of nad2 (714 bp) and nad5 (1394 bp in total) did the same for genotype G7 and its haplogroups G7a and G7b. The results of this study revealed for the first time the presence of genotype G7 in continental Italy. While haplogroup G7b was previously shown to be restricted to the islands of Corsica and Sardinia, here we demonstrate that haplogroup G7b is also present on the mainland of Italy. This work has implications in designing future strategies to reduce CE in Italy.


Assuntos
Equinococose/veterinária , Echinococcus granulosus/isolamento & purificação , Doenças dos Suínos/parasitologia , Animais , Echinococcus granulosus/genética , Complexo I de Transporte de Elétrons/genética , França , Genótipo , Itália , Mitocôndrias/genética , Suínos , Zoonoses/parasitologia
19.
Int J Mol Sci ; 20(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117273

RESUMO

Chromatin modifiers play a crucial role in maintaining cell identity through modulation of gene expression patterns. Their deregulation can have profound effects on cell fate and functions. Among epigenetic regulators, the MECP2 protein is particularly attractive. Mutations in the Mecp2 gene are responsible for more than 90% of cases of Rett syndrome (RTT), a progressive neurodevelopmental disorder. As a chromatin modulator, MECP2 can have a key role in the government of stem cell biology. Previously, we showed that deregulated MECP2 expression triggers senescence in mesenchymal stromal cells (MSCs) from (RTT) patients. Over the last few decades, it has emerged that senescent cells show alterations in the metabolic state. Metabolic changes related to stem cell senescence are particularly detrimental, since they contribute to the exhaustion of stem cell compartments, which in turn determine the falling in tissue renewal and functionality. Herein, we dissect the role of impaired MECP2 function in triggering senescence along with other senescence-related aspects, such as metabolism, in MSCs from a mouse model of RTT. We found that MECP2 deficiencies lead to senescence and impaired mitochondrial energy production. Our results support the idea that an alteration in mitochondria metabolic functions could play an important role in the pathogenesis of RTT.


Assuntos
Senescência Celular , Proteína 2 de Ligação a Metil-CpG/genética , Mitocôndrias/metabolismo , Mutação , Síndrome de Rett/metabolismo , Animais , Reparo do DNA , Modelos Animais de Doenças , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Síndrome de Rett/fisiopatologia
20.
Acta Vet Hung ; 67(1): 135-139, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30922086

RESUMO

Metagenomic analysis revealed the presence of porcine parvovirus 3 (PPV3) in the pool of the internal organs of a wild boar found dead in Southern Italy. Phylogenetic analysis based on the complete coding sequences showed that the newly detected virus is most closely related to those found also in wild boars in Romania during 2010-2011. Even though the death could not be associated with this virus, PPV3 could have contributed to lowering the host's immunological defences.


Assuntos
Metagenômica/métodos , Parvovirus Suíno/genética , Sus scrofa , Doenças dos Suínos/virologia , Animais , Genoma Viral , Itália/epidemiologia , Filogenia , Suínos , Doenças dos Suínos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA