Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 476(4): 683-697, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30692244

RESUMO

The tripeptide glutathione (GSH) is implicated in various crucial physiological processes including redox buffering and protection against heavy metal toxicity. GSH is abundant in plants, with reported intracellular concentrations typically in the 1-10 mM range. Various aminotransferases can inadvertently transaminate the amino group of the γ-glutamyl moiety of GSH to produce deaminated glutathione (dGSH), a metabolite damage product. It was recently reported that an amidase known as Nit1 participates in dGSH breakdown in mammals and yeast. Plants have a hitherto uncharacterized homolog of the Nit1 amidase. We show that recombinant Arabidopsis Nit1 (At4g08790) has high and specific amidase activity towards dGSH. Ablating the Arabidopsis Nit1 gene causes a massive accumulation of dGSH and other marked changes to the metabolome. All plant Nit1 sequences examined had predicted plastidial targeting peptides with a potential second start codon whose use would eliminate the targeting peptide. In vitro transcription/translation assays show that both potential translation start codons in Arabidopsis Nit1 were used and confocal microscopy of Nit1-GFP fusions in plant cells confirmed both cytoplasmic and plastidial localization. Furthermore, we show that Arabidopsis enzymes present in leaf extracts convert GSH to dGSH at a rate of 2.8 pmol min-1 mg-1 in the presence of glyoxalate as an amino acceptor. Our data demonstrate that plants have a dGSH repair system that is directed to at least two cellular compartments via the use of alternative translation start sites.


Assuntos
Amidoidrolases , Aminoidrolases , Proteínas de Arabidopsis , Arabidopsis , Glutationa/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma/enzimologia , Citoplasma/genética , Plastídeos/enzimologia , Plastídeos/genética
2.
BMC Microbiol ; 19(1): 209, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488075

RESUMO

BACKGROUND: The primary and secondary metabolites of fungi are critical for adaptation to environmental stresses, host pathogenicity, competition with other microbes, and reproductive fitness. Drought-derived reactive oxygen species (ROS) have been shown to stimulate aflatoxin production and regulate in Aspergillus flavus, and may function in signaling with host plants. Here, we have performed global, untargeted metabolomics to better understand the role of aflatoxin production in oxidative stress responses, and also explore isolate-specific oxidative stress responses over time. RESULTS: Two field isolates of A. flavus, AF13 and NRRL3357, possessing high and moderate aflatoxin production, respectively, were cultured in medium with and without supplementation with 15 mM H2O2, and mycelia were collected following 4 and 7 days in culture for global metabolomics. Overall, 389 compounds were described in the analysis which encompassed 9 biological super-pathways and 47 sub-pathways. These metabolites were examined for differential accumulation. Significant differences were observed in both isolates in response to oxidative stress and when comparing sampling time points. CONCLUSIONS: The moderately high aflatoxin-producing isolate, NRRL3357, showed extensive stimulation of antioxidant mechanisms and pathways including polyamines metabolism, glutathione metabolism, TCA cycle, and lipid metabolism while the highly aflatoxigenic isolate, AF13, showed a less vigorous response to stress. Carbohydrate pathway levels also imply that carbohydrate repression and starvation may influence metabolite accumulation at the later timepoint. Higher conidial oxidative stress tolerance and antioxidant capacity in AF13 compared to NRRL3357, inferred from their metabolomic profiles and growth curves over time, may be connected to aflatoxin production capability and aflatoxin-related antioxidant accumulation. The coincidence of several of the detected metabolites in H2O2-stressed A. flavus and drought-stressed hosts also suggests their potential role in the interaction between these organisms and their use as markers/targets to enhance host resistance through biomarker selection or genetic engineering.


Assuntos
Aspergillus flavus/metabolismo , Metabolismo dos Carboidratos , Glutationa/metabolismo , Estresse Oxidativo/fisiologia , Poliaminas/metabolismo , Esporos Fúngicos/metabolismo , Aflatoxinas/metabolismo , Antioxidantes/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/isolamento & purificação , Vias Biossintéticas/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/isolamento & purificação
3.
Plant J ; 92(3): 386-399, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28792629

RESUMO

Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gß- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Xilanos/metabolismo , Ácido Abscísico/metabolismo , Acetilação , Acetiltransferases , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Parede Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas de Membrana , Modelos Biológicos , Mutação , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Plântula/genética , Plântula/imunologia , Plântula/metabolismo
4.
New Phytol ; 218(2): 661-680, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29451312

RESUMO

Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Resistência à Doença , MAP Quinase Quinase Quinases/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Padronização Corporal , Parede Celular/metabolismo , Flagelina/farmacologia , Fungos/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Regulação para Cima/genética
5.
Depress Anxiety ; 35(12): 1168-1177, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30184299

RESUMO

BACKGROUND: The molecular mechanisms underpinning the progesterone-triggering mood symptoms in women with premenstrual dysphoric disorder (PMDD) are unknown. Cell metabolism is a potential source of variability. Very little is known about the effect of progesterone sensitivity on the metabolome. In this study, we aimed to characterize the effects of progesterone on the global metabolic profile and explore the differences between women with PMDD and controls. METHODS: Plasma was obtained from 12 women with prospectively confirmed PMDD and 25 controls under two hormone conditions: (1) gonadal suppression induced by leuprolide acetate (3.75 mg IM monthly) and (2) add-back phase with leuprolide and progesterone (200 mg twice daily by vaginal suppository). The global metabolic profile was obtained using liquid and gas chromatography followed by mass spectrometry. Differences between groups and time points were tested using repeated measures analysis of variance. The false discovery rate was calculated to account for multiple testing. RESULTS: Amino acids and their derivatives represented 78% (28/36) of the known compounds that were found in significantly lower plasma concentrations after progesterone administration than during gonadal suppression. The concentration of tyrosine was nominally significantly decreased after progesterone add-back in controls, but not in cases (P = 0.02). CONCLUSION: Plasma levels of some amino acids are decreased in response to progesterone. Albeit preliminary, evidence further suggests that progesterone has a different effect on the metabolic profiles of women with PMDD compared to controls. Further research is needed to replicate our findings in a larger sample and to identify the unknown compounds, especially those differentially expressed.


Assuntos
Aminoácidos/sangue , Metaboloma/efeitos dos fármacos , Transtorno Disfórico Pré-Menstrual/sangue , Progesterona/farmacologia , Progestinas/farmacologia , Adulto , Aminoácidos/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Progesterona/administração & dosagem , Progestinas/administração & dosagem
6.
Proc Natl Acad Sci U S A ; 112(35): E4901-10, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283345

RESUMO

Precision medicine, taking account of human individuality in genes, environment, and lifestyle for early disease diagnosis and individualized therapy, has shown great promise to transform medical care. Nontargeted metabolomics, with the ability to detect broad classes of biochemicals, can provide a comprehensive functional phenotype integrating clinical phenotypes with genetic and nongenetic factors. To test the application of metabolomics in individual diagnosis, we conducted a metabolomics analysis on plasma samples collected from 80 volunteers of normal health with complete medical records and three-generation pedigrees. Using a broad-spectrum metabolomics platform consisting of liquid chromatography and GC coupled with MS, we profiled nearly 600 metabolites covering 72 biochemical pathways in all major branches of biosynthesis, catabolism, gut microbiome activities, and xenobiotics. Statistical analysis revealed a considerable range of variation and potential metabolic abnormalities across the individuals in this cohort. Examination of the convergence of metabolomics profiles with whole-exon sequences (WESs) provided an effective approach to assess and interpret clinical significance of genetic mutations, as shown in a number of cases, including fructose intolerance, xanthinuria, and carnitine deficiency. Metabolic abnormalities consistent with early indications of diabetes, liver dysfunction, and disruption of gut microbiome homeostasis were identified in several volunteers. Additionally, diverse metabolic responses to medications among the volunteers may assist to identify therapeutic effects and sensitivity to toxicity. The results of this study demonstrate that metabolomics could be an effective approach to complement next generation sequencing (NGS) for disease risk analysis, disease monitoring, and drug management in our goal toward precision care.


Assuntos
Voluntários Saudáveis , Metaboloma , Plasma , Medicina de Precisão , Cromatografia Líquida , Estudos de Coortes , Cromatografia Gasosa-Espectrometria de Massas , Humanos
7.
Plant J ; 87(5): 442-54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27155400

RESUMO

The plant vascular system, and specifically the phloem, plays a pivotal role in allocation of fixed carbon to developing sink organs. Although the processes involved in loading and unloading of sugars and amino acids are well characterized, little information is available regarding the nature of other metabolites in the sieve tube system (STS) at specific sites along the pathway. Here, we elucidate spatial features of metabolite composition mapped with phloem enzymes along the cucurbit STS. Phloem sap (PS) was collected from the loading (source), unloading (apical sink region) and shoot-root junction regions of cucumber, watermelon and pumpkin. Our PS analyses revealed significant differences in the metabolic and proteomic profiles both along the source-sink pathway and between the STSs of these three cucurbits. In addition, metabolite profiles established for PS and vascular tissue indicated the presence of distinct compositions, consistent with the operation of the STS as a unique symplasmic domain. In this regard, at various locations along the STS we could map metabolites and their related enzymes to specific metabolic pathways. These findings are discussed with regard to the function of the STS as a unique and highly complex metabolic space within the plant vascular system.


Assuntos
Cucumis/metabolismo , Metabolômica/métodos , Proteínas de Plantas/metabolismo , Proteômica/métodos , Cucumis sativus/metabolismo , Floema/metabolismo
8.
BMC Plant Biol ; 17(1): 39, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28166731

RESUMO

BACKGROUND: Grain chalkiness is a highly undesirable trait deleterious to rice appearance and milling quality. The physiological and molecular foundation of chalkiness formation is still partially understood, because of the complex interactions between multiple genes and growing environments. RESULTS: We report the untargeted metabolomic analysis of grains from a notched-belly mutant (DY1102) with high percentage of white-belly, which predominantly occurs in the bottom part proximal to the embryo. Metabolites in developing grains were profiled on the composite platforms of UPLC/MS/MS and GC/MS. Sampling times were 5, 10, 15, and 20 days after anthesis, the critical time points for chalkiness formation. A total of 214 metabolites were identified, covering most of the central metabolic pathways and partial secondary pathways including amino acids, carbohydrates, lipids, cofactors, peptides, nucleotides, phytohormones, and secondary metabolites. A comparison of the bottom chalky part and the upper translucent part of developing grains of DY1102 resulted in 180 metabolites related to chalkiness formation. CONCLUSIONS: Generally, in comparison to the translucent upper part, the chalky endosperm had lower levels of metabolites regarding carbon and nitrogen metabolism for synthesis of storage starch and protein, which was accompanied by perturbation of pathways participating in scavenging of reactive oxygen species, osmorugulation, cell wall synthesis, and mineral ion homeostasis. Based on these results, metabolic mechanism of chalkiness formation is discussed, with the role of embryo highlighted.


Assuntos
Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Grão Comestível/anatomia & histologia , Grão Comestível/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/fisiologia , Metabolômica , Oryza/anatomia & histologia , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem
9.
PLoS Genet ; 10(3): e1004212, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24625756

RESUMO

Phenotypes proximal to gene action generally reflect larger genetic effect sizes than those that are distant. The human metabolome, a result of multiple cellular and biological processes, are functional intermediate phenotypes proximal to gene action. Here, we present a genome-wide association study of 308 untargeted metabolite levels among African Americans from the Atherosclerosis Risk in Communities (ARIC) Study. Nineteen significant common variant-metabolite associations were identified, including 13 novel loci (p<1.6 × 10(-10)). These loci were associated with 7-50% of the difference in metabolite levels per allele, and the variance explained ranged from 4% to 20%. Fourteen genes were identified within the nineteen loci, and four of them contained non-synonymous substitutions in four enzyme-encoding genes (KLKB1, SIAE, CPS1, and NAT8); the other significant loci consist of eight other enzyme-encoding genes (ACE, GATM, ACY3, ACSM2B, THEM4, ADH4, UGT1A, TREH), a transporter gene (SLC6A13) and a polycystin protein gene (PKD2L1). In addition, four potential disease-associated paths were identified, including two direct longitudinal predictive relationships: NAT8 with N-acetylornithine, N-acetyl-1-methylhistidine and incident chronic kidney disease, and TREH with trehalose and incident diabetes. These results highlight the value of using endophenotypes proximal to gene function to discover new insights into biology and disease pathology.


Assuntos
Aterosclerose/sangue , Estudo de Associação Genômica Ampla , Metaboloma/genética , Polimorfismo de Nucleotídeo Único , Acetiltransferases/sangue , Acetiltransferases/genética , Negro ou Afro-Americano/genética , Alelos , Aterosclerose/genética , Aterosclerose/patologia , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Fenótipo , Trealose/sangue , Trealose/genética
10.
Am J Epidemiol ; 183(7): 650-6, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26956554

RESUMO

Early and accurate identification of people at high risk of premature death may assist in the targeting of preventive therapies in order to improve overall health. To identify novel biomarkers for all-cause mortality, we performed untargeted metabolomics in the Atherosclerosis Risk in Communities (ARIC) Study. We included 1,887 eligible ARIC African Americans, and 671 deaths occurred during a median follow-up period of 22.5 years (1987-2011). Chromatography and mass spectroscopy identified and quantitated 204 serum metabolites, and Cox proportional hazards models were used to analyze the longitudinal associations with all-cause and cardiovascular mortality. Nine metabolites, including cotinine, mannose, glycocholate, pregnendiol disulfate, α-hydroxyisovalerate, N-acetylalanine, andro-steroid monosulfate 2, uridine, and γ-glutamyl-leucine, showed independent associations with all-cause mortality, with an average risk change of 18% per standard-deviation increase in metabolite level (P < 1.23 × 10(-4)). A metabolite risk score, created on the basis of the weighted levels of the identified metabolites, improved the predictive ability of all-cause mortality over traditional risk factors (bias-corrected Harrell's C statistic 0.752 vs. 0.730). Mannose and glycocholate were associated with cardiovascular mortality (P < 1.23 × 10(-4)), but predictive ability was not improved beyond the traditional risk factors. This metabolomic analysis revealed potential novel biomarkers for all-cause mortality beyond the traditional risk factors.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Doenças Cardiovasculares/sangue , Metaboloma , Mortalidade , Doenças Cardiovasculares/mortalidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estados Unidos/epidemiologia
11.
BMC Genomics ; 16: 484, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123791

RESUMO

BACKGROUND: The Solanaceae are an economically important family of plants that include tobacco (Nicotiana tabacum L.), tomato, and potato. Drought is a major cause of crop losses. RESULTS: We have identified major changes in physiology, metabolites, mRNA levels, and promoter activities during the tobacco response to drought. We have classified these as potential components of core responses that may be common to many plant species or responses that may be family/species-specific features of the drought stress response in tobacco or the Solanaceae. In tobacco the largest increase in any metabolite was a striking 70-fold increase in 4-hydroxy-2-oxoglutaric acid (KHG) in roots that appears to be tobacco/Solanaceae specific. KHG is poorly characterized in plants but is broken down to pyruvate and glyoxylate after the E. coli SOS response to facilitate the resumption of respiration. A similar process in tobacco would represent a mechanism to restart respiration upon water availability after drought. At the mRNA level, transcription factor gene induction by drought also showed both core and species/family specific responses. Many Group IX Subgroup 3 AP2/ERF transcription factors in tobacco appear to play roles in nicotine biosynthesis as a response to herbivory, whereas their counterparts in legume species appear to play roles in drought responses. We observed apparent Solanaceae-specific drought induction of several Group IId WRKY genes. One of these, NtWRKY69, showed ABA-independent drought stress-inducible promoter activity that moved into the leaf through the vascular tissue and then eventually into the surrounding leaf cells. CONCLUSIONS: We propose components of a core metabolic response to drought stress in plants and also show that some major responses to drought stress at the metabolome and transcriptome levels are family specific. We therefore propose that the observed family-specific changes in metabolism are regulated, at least in part, by family-specific changes in transcription factor activity. We also present a list of potential targets for the improvement of Solanaceae drought responses.


Assuntos
Nicotiana/metabolismo , Estresse Fisiológico , Secas , Ácidos Cetoglutáricos/metabolismo , Metaboloma , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Análise de Componente Principal , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
BMC Genomics ; 16: 477, 2015 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-26116072

RESUMO

BACKGROUND: The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. RESULTS: Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. CONCLUSIONS: The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.


Assuntos
Parede Celular/genética , Gossypium/genética , Metaboloma/genética , Transcriptoma/genética , Metabolismo dos Carboidratos/genética , Fibra de Algodão/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Glucosiltransferases/genética , Metabolômica/métodos
13.
Plant Cell ; 24(12): 4850-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275579

RESUMO

Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
14.
Nature ; 457(7231): 910-4, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19212411

RESUMO

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.


Assuntos
Progressão da Doença , Metabolômica , Neoplasias da Próstata/metabolismo , Sarcosina/metabolismo , Androgênios/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Masculino , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Sarcosina/análise , Sarcosina/urina , Sarcosina Desidrogenase/metabolismo , Transdução de Sinais
15.
J Proteome Res ; 13(5): 2534-42, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24628373

RESUMO

Nontargeted metabolomics analyses were used (1) to compare fecal metabolite profiles of healthy breast-fed (BF) and formula-fed (FF) infants before and during in vitro fermentation in batch culture and (2) to evaluate fecal metabolomics in assessing infant diet. Samples from healthy BF (n = 4) or FF (n = 4) infants were individually incubated at 37( °)C in anaerobic media containing 1% (wt/vol) galactooligosaccharides, 6'-sialyllactose, 2'-fucosyllactose, lacto-N-neotetraose, inulin, and gum arabic for up to 6 h, and supernatants were analyzed using GC/MS and LC/MS/MS to assess changes in various compounds. Comparison of over 250 metabolites prior to incubation showed that BF samples contained higher relative concentrations (P ≤ 0.05) of 14 compounds including human milk oligosaccharides and other metabolites presumably transferred through breast feeding (linoelaidate, myo-inositol) (P ≤ 0.05). Conversely, feces from FF infants contained 41 identified metabolites at higher levels (P ≤ 0.05) with many indicative of carbon limitation and protein fermentation. Our data are consistent with the notion that carbon-limited cultures catabolize protein and amino acids to obtain energy, whereas the provision of fermentable carbohydrate creates anabolic conditions relying on amino acids for bacterial growth. Results also suggest that fecal metabolomics can be a useful tool for studying interactions among diet, microbes, and host.


Assuntos
Aleitamento Materno , Fezes/química , Fermentação , Fórmulas Infantis/administração & dosagem , Metabolômica/métodos , Técnicas de Cultura Celular por Lotes/métodos , Fezes/microbiologia , Galactose/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Goma Arábica/metabolismo , Humanos , Lactente , Inulina/metabolismo , Lactose/análogos & derivados , Lactose/metabolismo , Oligossacarídeos/metabolismo , Trissacarídeos/metabolismo
16.
Genet Epidemiol ; 37(8): 840-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23934736

RESUMO

Both the prevalence and incidence of heart failure (HF) are increasing, especially among African Americans, but no large-scale, genome-wide association study (GWAS) of HF-related metabolites has been reported. We sought to identify novel genetic variants that are associated with metabolites previously reported to relate to HF incidence. GWASs of three metabolites identified previously as risk factors for incident HF (pyroglutamine, dihydroxy docosatrienoic acid, and X-11787, being either hydroxy-leucine or hydroxy-isoleucine) were performed in 1,260 African Americans free of HF at the baseline examination of the Atherosclerosis Risk in Communities (ARIC) study. A significant association on chromosome 5q33 (rs10463316, MAF = 0.358, P-value = 1.92 × 10(-10) ) was identified for pyroglutamine. One region on chromosome 2p13 contained a nonsynonymous substitution in N-acetyltransferase 8 (NAT8) was associated with X-11787 (rs13538, MAF = 0.481, P-value = 1.71 × 10(-23) ). The smallest P-value for dihydroxy docosatrienoic acid was rs4006531 on chromosome 8q24 (MAF = 0.400, P-value = 6.98 × 10(-7) ). None of the above SNPs were individually associated with incident HF, but a genetic risk score (GRS) created by summing the most significant risk alleles from each metabolite detected 11% greater risk of HF per allele. In summary, we identified three loci associated with previously reported HF-related metabolites. Further use of metabolomics technology will facilitate replication of these findings in independent samples.


Assuntos
Aterosclerose/genética , Negro ou Afro-Americano/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Metaboloma , Acetiltransferases/genética , Alelos , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 5/genética , Estudos de Coortes , Ácidos Graxos Insaturados/metabolismo , Feminino , Loci Gênicos/genética , Humanos , Incidência , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Leucina/metabolismo , Masculino , Metaboloma/genética , Metabolômica , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Ácido Pirrolidonocarboxílico/metabolismo , Fatores de Risco
17.
BMC Genomics ; 15: 1056, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25471115

RESUMO

BACKGROUND: Understanding gene expression and metabolic re-programming that occur in response to limiting nitrogen (N) conditions in crop plants is crucial for the ongoing progress towards the development of varieties with improved nitrogen use efficiency (NUE). To unravel new details on the molecular and metabolic responses to N availability in a major food crop, we conducted analyses on a weighted gene co-expression network and metabolic profile data obtained from leaves and roots of rice plants adapted to sufficient and limiting N as well as after shifting them to limiting (reduction) and sufficient (induction) N conditions. RESULTS: A gene co-expression network representing clusters of rice genes with similar expression patterns across four nitrogen conditions and two tissue types was generated. The resulting 18 clusters were analyzed for enrichment of significant gene ontology (GO) terms. Four clusters exhibited significant correlation with limiting and reducing nitrate treatments. Among the identified enriched GO terms, those related to nucleoside/nucleotide, purine and ATP binding, defense response, sugar/carbohydrate binding, protein kinase activities, cell-death and cell wall enzymatic activity are enriched. Although a subset of functional categories are more broadly associated with the response of rice organs to limiting N and N reduction, our analyses suggest that N reduction elicits a response distinguishable from that to adaptation to limiting N, particularly in leaves. This observation is further supported by metabolic profiling which shows that several compounds in leaves change proportionally to the nitrate level (i.e. higher in sufficient N vs. limiting N) and respond with even higher levels when the nitrate level is reduced. Notably, these compounds are directly involved in N assimilation, transport, and storage (glutamine, asparagine, glutamate and allantoin) and extend to most amino acids. Based on these data, we hypothesize that plants respond by rapidly mobilizing stored vacuolar nitrate when N deficit is perceived, and that the response likely involves phosphorylation signal cascades and transcriptional regulation. CONCLUSIONS: The co-expression network analysis and metabolic profiling performed in rice pinpoint the relevance of signal transduction components and regulation of N mobilization in response to limiting N conditions and deepen our understanding of N responses and N use in crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Nitratos/metabolismo , Oryza/genética , Oryza/metabolismo , Análise por Conglomerados , Biologia Computacional , Epigênese Genética , Perfilação da Expressão Gênica , Metaboloma , Metabolômica , Anotação de Sequência Molecular , Família Multigênica , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Am J Epidemiol ; 179(12): 1424-33, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24801555

RESUMO

The human metabolome is a measurable outcome of interactions among an individual's inherited genome, microbiome, and dietary intake. We explored the relationship between dietary intake and serum untargeted metabolomic profiles in a subsample of 1,977 African Americans from the Atherosclerosis Risk in Communities (ARIC) Study in 1987-1989. For each metabolite, we conducted linear regression to estimate its relationships with each food group and food category. Potential confounding factors included age, sex, body mass index (weight (kg)/height (m)(2)), energy intake, kidney function, and food groups. We used a modified Bonferroni correction to determine statistical significance. In total, 48 pairs of diet-metabolite associations were identified, including multiple novel associations. The food group "sugar-rich foods and beverages" was inversely associated with 5 metabolites in the 2-hydroxybutyrate-related subpathway and positively associated with 5 γ-glutamyl dipeptides. The hypothesized mechanism of these associations may be through oxidative stress. "Sugar-rich foods and beverages" were also inversely associated with 7 unsaturated long-chain fatty acids. These findings suggest that the contribution of a sugar-rich dietary pattern to increased cardiovascular disease risk may be partially attributed to oxidative stress and disordered lipid profiles. Metabolomics may reveal novel metabolic biomarkers of dietary intake and provide insight into biochemical pathways underlying nutritional effects on disease development.


Assuntos
Aterosclerose/etnologia , Negro ou Afro-Americano , Comportamento Alimentar , Metaboloma , Aterosclerose/metabolismo , Biomarcadores/metabolismo , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sobrepeso/metabolismo , Fatores de Risco
19.
Plant Cell ; 23(4): 1231-48, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21467579

RESUMO

Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.


Assuntos
Adaptação Fisiológica , Dessecação , Metabolômica/métodos , Poaceae/metabolismo , Alantoína/metabolismo , Asparagina/metabolismo , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Glutationa/biossíntese , Glicólise , Metaboloma , Nitrogênio/metabolismo , Fenótipo , Rafinose/metabolismo , Tocoferóis/metabolismo , Água
20.
Plant J ; 72(6): 983-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061970

RESUMO

Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.


Assuntos
Metabolômica , Selaginellaceae/metabolismo , Biomarcadores/metabolismo , Vias Biossintéticas , Dessecação , Nitrogênio/metabolismo , Fenótipo , Especificidade da Espécie , Estresse Fisiológico , Espectrometria de Massas em Tandem , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA