Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genome Res ; 30(1): 49-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727682

RESUMO

We show the use of 5'-Acrydite oligonucleotides to copolymerize single-cell DNA or RNA into balls of acrylamide gel (BAGs). Combining this step with split-and-pool techniques for creating barcodes yields a method with advantages in cost and scalability, depth of coverage, ease of operation, minimal cross-contamination, and efficient use of samples. We perform DNA copy number profiling on mixtures of cell lines, nuclei from frozen prostate tumors, and biopsy washes. As applied to RNA, the method has high capture efficiency of transcripts and sufficient consistency to clearly distinguish the expression patterns of cell lines and individual nuclei from neurons dissected from the mouse brain. By using varietal tags (UMIs) to achieve sequence error correction, we show extremely low levels of cross-contamination by tracking source-specific SNVs. The method is readily modifiable, and we will discuss its adaptability and diverse applications.


Assuntos
Acrilamida , Ácidos Nucleicos , Análise de Célula Única/métodos , Acrilamida/química , DNA , Contaminação por DNA , Variações do Número de Cópias de DNA , Dosagem de Genes , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Biblioteca Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ácidos Nucleicos/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Polimerização , RNA , Análise de Célula Única/normas
2.
Nucleic Acids Res ; 48(7): e40, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083660

RESUMO

Measuring minimal residual disease in cancer has applications for prognosis, monitoring treatment and detection of recurrence. Simple sequence-based methods to detect nucleotide substitution variants have error rates (about 10-3) that limit sensitive detection. We developed and characterized the performance of MASQ (multiplex accurate sensitive quantitation), a method with an error rate below 10-6. MASQ counts variant templates accurately in the presence of millions of host genomes by using tags to identify each template and demanding consensus over multiple reads. Since the MASQ protocol multiplexes 50 target loci, we can both integrate signal from multiple variants and capture subclonal response to treatment. Compared to existing methods for variant detection, MASQ achieves an excellent combination of sensitivity, specificity and yield. We tested MASQ in a pilot study in acute myeloid leukemia (AML) patients who entered complete remission. We detect leukemic variants in the blood and bone marrow samples of all five patients, after induction therapy, at levels ranging from 10-2 to nearly 10-6. We observe evidence of sub-clonal structure and find higher target variant frequencies in patients who go on to relapse, demonstrating the potential for MASQ to quantify residual disease in AML.


Assuntos
Leucemia Mieloide Aguda/genética , Algoritmos , Genômica/métodos , Humanos , Leucemia Mieloide Aguda/terapia , Mutação , Neoplasia Residual , Projetos Piloto , Recidiva , Indução de Remissão , Sequenciamento Completo do Genoma
3.
JCO Clin Cancer Inform ; 4: 464-471, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32432904

RESUMO

PURPOSE: Copy-number profiling of multiple individual cells from sparse sequencing may be used to reveal a detailed picture of genomic heterogeneity and clonal organization in a tissue biopsy specimen. We sought to provide a comprehensive computational pipeline for single-cell genomics, to facilitate adoption of this molecular technology for basic and translational research. MATERIALS AND METHODS: The pipeline comprises software tools programmed in Python and in R and depends on Bowtie, HISAT2, Matplotlib, and Qt. It is installed and used with Anaconda. RESULTS: Here we describe a complete pipeline for sparse single-cell genomic data, encompassing all steps of single-nucleus DNA copy-number profiling, from raw sequence processing to clonal structure analysis and visualization. For the latter, a specialized graphical user interface termed the single-cell genome viewer (SCGV) is provided. With applications to cancer diagnostics in mind, the SCGV allows for zooming and linkage to the University of California at Santa Cruz Genome Browser from each of the multiple integrated views of single-cell copy-number profiles. The latter can be organized by clonal substructure or by any of the associated metadata such as anatomic location and histologic characterization. CONCLUSION: The pipeline is available as open-source software for Linux and OS X. Its modular structure, extensive documentation, and ease of deployment using Anaconda facilitate its adoption by researchers and practitioners of single-cell genomics. With open-source availability and Massachusetts Institute of Technology licensing, it provides a basis for additional development by the cancer bioinformatics community.


Assuntos
Biologia Computacional , Software , Genoma , Genômica , Humanos
4.
Cancer Res ; 78(2): 348-358, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180472

RESUMO

A distinction between indolent and aggressive disease is a major challenge in diagnostics of prostate cancer. As genetic heterogeneity and complexity may influence clinical outcome, we have initiated studies on single tumor cell genomics. In this study, we demonstrate that sparse DNA sequencing of single-cell nuclei from prostate core biopsies is a rich source of quantitative parameters for evaluating neoplastic growth and aggressiveness. These include the presence of clonal populations, the phylogenetic structure of those populations, the degree of the complexity of copy-number changes in those populations, and measures of the proportion of cells with clonal copy-number signatures. The parameters all showed good correlation to the measure of prostatic malignancy, the Gleason score, derived from individual prostate biopsy tissue cores. Remarkably, a more accurate histopathologic measure of malignancy, the surgical Gleason score, agrees better with these genomic parameters of diagnostic biopsy than it does with the diagnostic Gleason score and related measures of diagnostic histopathology. This is highly relevant because primary treatment decisions are dependent upon the biopsy and not the surgical specimen. Thus, single-cell analysis has the potential to augment traditional core histopathology, improving both the objectivity and accuracy of risk assessment and inform treatment decisions.Significance: Genomic analysis of multiple individual cells harvested from prostate biopsies provides an indepth view of cell populations comprising a prostate neoplasm, yielding novel genomic measures with the potential to improve the accuracy of diagnosis and prognosis in prostate cancer. Cancer Res; 78(2); 348-58. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/genética , Genômica/métodos , Neoplasias da Próstata/diagnóstico , Análise de Célula Única/métodos , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Filogenia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Medição de Risco
5.
Trends Mol Med ; 23(7): 594-603, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28587830

RESUMO

Here, we explore the potential of single-cell genomic analysis in blood for early detection of cancer; we consider a method that screens the presence of recurrent patterns of copy number (CN) alterations using sparse single-cell sequencing. We argue for feasibility, based on in silico analysis of existing single-cell data and cancer CN profiles. Sampling procedures from existing diploid single cells can render data for a cell with any given profile. Sampling from multiple published tumor profiles can interrogate cancer clonality via an algorithm that tests the multiplicity of close pairwise similarities among single-cell cancer genomes. The majority of common solid cancers would be detectable in this manner. As any early detection method must be verifiable and actionable, we describe how further analysis of suspect cells can aid in determining risk and anatomic origin. Future affordability rests on currently available procedures for tumor cell enrichment and inexpensive methods for single-cell analysis.


Assuntos
Simulação por Computador , Dosagem de Genes , Genoma Humano , Neoplasias , Animais , Humanos , Neoplasias/diagnóstico , Neoplasias/genética
6.
Proc Natl Acad Sci U S A ; 103(30): 11234-9, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16844783

RESUMO

Genomic amplifications and deletions, the consequence of somatic variation, are a hallmark of human cancer. Such variation has also been observed between "normal" individuals, as well as in individuals with congenital disorders. Thus, copy number measurement is likely to be an important tool for the analysis of genetic variation, genetic disease, and cancer. We developed representational oligonucleotide microarray analysis, a high-resolution comparative genomic hybridization methodology, with this aim in mind, and reported its use in the study of humans. Here we report the development of a representational oligonucleotide microarray analysis microarray for the genomic analysis of the mouse, an important model system for many genetic diseases and cancer. This microarray was designed based on the sequence assembly MM3, and contains approximately 84,000 probes randomly distributed throughout the mouse genome. We demonstrate the use of this array to identify copy number changes in mouse cancers, as well to determine copy number variation between inbred strains of mice. Because restriction endonuclease digestion of genomic DNA is an integral component of our method, differences due to polymorphisms at the restriction enzyme cleavage sites are also observed between strains, and these can be useful to follow the inheritance of loci between crosses of different strains.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oligonucleotídeos/química , Animais , Cruzamentos Genéticos , Genoma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Hibridização de Ácido Nucleico , Polimorfismo Genético , Especificidade da Espécie
7.
Genome Res ; 16(12): 1465-79, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17142309

RESUMO

Representational Oligonucleotide Microarray Analysis (ROMA) detects genomic amplifications and deletions with boundaries defined at a resolution of approximately 50 kb. We have used this technique to examine 243 breast tumors from two separate studies for which detailed clinical data were available. The very high resolution of this technology has enabled us to identify three characteristic patterns of genomic copy number variation in diploid tumors and to measure correlations with patient survival. One of these patterns is characterized by multiple closely spaced amplicons, or "firestorms," limited to single chromosome arms. These multiple amplifications are highly correlated with aggressive disease and poor survival even when the rest of the genome is relatively quiet. Analysis of a selected subset of clinical material suggests that a simple genomic calculation, based on the number and proximity of genomic alterations, correlates with life-table estimates of the probability of overall survival in patients with primary breast cancer. Based on this sample, we generate the working hypothesis that copy number profiling might provide information useful in making clinical decisions, especially regarding the use or not of systemic therapies (hormonal therapy, chemotherapy), in the management of operable primary breast cancer with ostensibly good prognosis, for example, small, node-negative, hormone-receptor-positive diploid cases.


Assuntos
Neoplasias da Mama/genética , Rearranjo Gênico , Genoma Humano , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , DNA de Neoplasias/genética , Diploide , Feminino , Amplificação de Genes , Dosagem de Genes , Perfilação da Expressão Gênica , Genômica , Humanos , Hibridização in Situ Fluorescente , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
8.
Science ; 305(5683): 525-8, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15273396

RESUMO

The extent to which large duplications and deletions contribute to human genetic variation and diversity is unknown. Here, we show that large-scale copy number polymorphisms (CNPs) (about 100 kilobases and greater) contribute substantially to genomic variation between normal humans. Representational oligonucleotide microarray analysis of 20 individuals revealed a total of 221 copy number differences representing 76 unique CNPs. On average, individuals differed by 11 CNPs, and the average length of a CNP interval was 465 kilobases. We observed copy number variation of 70 different genes within CNP intervals, including genes involved in neurological function, regulation of cell growth, regulation of metabolism, and several genes known to be associated with disease.


Assuntos
Dosagem de Genes , Variação Genética , Genoma Humano , Polimorfismo Genético , Alelos , Proteínas de Bactérias/metabolismo , Linhagem Celular Transformada , Aberrações Cromossômicas , Mapeamento Cromossômico , Cromossomos Humanos/genética , Desoxirribonuclease HindIII/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Feminino , Deleção de Genes , Duplicação Gênica , Frequência do Gene , Humanos , Masculino , Cadeias de Markov , Análise de Sequência com Séries de Oligonucleotídeos
9.
Genome Res ; 13(10): 2291-305, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12975311

RESUMO

We have developed a methodology we call ROMA (representational oligonucleotide microarray analysis), for the detection of the genomic aberrations in cancer and normal humans. By arraying oligonucleotide probes designed from the human genome sequence, and hybridizing with "representations" from cancer and normal cells, we detect regions of the genome with altered "copy number." We achieve an average resolution of 30 kb throughout the genome, and resolutions as high as a probe every 15 kb are practical. We illustrate the characteristics of probes on the array and accuracy of measurements obtained using ROMA. Using this methodology, we identify variation between cancer and normal genomes, as well as between normal human genomes. In cancer genomes, we readily detect amplifications and large and small homozygous and hemizygous deletions. Between normal human genomes, we frequently detect large (100 kb to 1 Mb) deletions or duplications. Many of these changes encompass known genes. ROMA will assist in the discovery of genes and markers important in cancer, and the discovery of loci that may be important in inherited predispositions to disease.


Assuntos
Dosagem de Genes , Variação Genética/genética , Genoma Humano , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Aneuploidia , Composição de Bases/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Diploide , Feminino , Genes Neoplásicos/genética , Humanos , Masculino , Modelos Genéticos , Hibridização de Ácido Nucleico/genética , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/genética , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA