Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 90(8): e0020822, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862709

RESUMO

Detection of Gram-negative bacterial lipid A by the extracellular sensor, myeloid differentiation 2 (MD2)/Toll-like receptor 4 (TLR4), or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically its phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all tetra-, penta-, and hexa-acylated LOS variants examined activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation. In contrast, both core oligosaccharide and lipid A were required for robust CASP4/5 inflammasome activation in human macrophages, whereas core oligosaccharide was not required to activate mouse macrophages expressing CASP4. Our findings show that human TLR4 and CASP4/5 detect both shared and nonoverlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A and would thereby be expected to constrain the ability of pathogens to evade innate immune detection.


Assuntos
Lipídeo A , Receptor 4 Toll-Like , Acilação , Animais , Humanos , Inflamassomos , Lipídeo A/química , Lipopolissacarídeos , Macrófagos , Camundongos , Receptor 4 Toll-Like/metabolismo
2.
PLoS Biol ; 17(3): e3000196, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908491

RESUMO

Differentiation of secretory cells leads to sharp increases in protein synthesis, challenging endoplasmic reticulum (ER) proteostasis. Anticipatory activation of the unfolded protein response (UPR) prepares cells for the onset of secretory function by expanding the ER size and folding capacity. How cells ensure that the repertoire of induced chaperones matches their postdifferentiation folding needs is not well understood. We find that during differentiation of stem-like seam cells, a typical UPR target, the Caenorhabditis elegans immunoglobulin heavy chain-binding protein (BiP) homologue Heat-Shock Protein 4 (HSP-4), is selectively induced in alae-secreting daughter cells but is repressed in hypodermal daughter cells. Surprisingly, this lineage-dependent induction bypasses the requirement for UPR signaling. Instead, its induction in alae-secreting cells is controlled by a specific developmental program, while its repression in the hypodermal-fated cells requires a transcriptional regulator B-Lymphocyte-Induced Maturation Protein 1 (BLMP-1/BLIMP1), involved in differentiation of mammalian secretory cells. The HSP-4 induction is anticipatory and is required for the integrity of secreted alae. Thus, differentiation programs can directly control a broad-specificity chaperone that is normally stress dependent to ensure the integrity of secreted proteins.


Assuntos
Proteínas de Choque Térmico/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Linfócitos B/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/genética
3.
BMC Biol ; 11: 100, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24079614

RESUMO

BACKGROUND: Monogenic gain-of-function protein aggregation diseases, including Huntington's disease, exhibit substantial variability in age of onset, penetrance, and clinical symptoms, even between individuals with similar or identical mutations. This difference in phenotypic expression of proteotoxic mutations is proposed to be due, at least in part, to the variability in genetic background. To address this, we examined the role of natural variation in defining the susceptibility of genetically diverse individuals to protein aggregation and toxicity, using the Caenorhabditis elegans polyglutamine model. RESULTS: Introgression of polyQ40 into three wild genetic backgrounds uncovered wide variation in onset of aggregation and corresponding toxicity, as well as alteration in the cell-specific susceptibility to aggregation. To further dissect these relationships, we established a panel of 21 recombinant inbred lines that showed a broad range of aggregation phenotypes, independent of differences in expression levels. We found that aggregation is a transgressive trait, and does not always correlate with measures of toxicity, such as early onset of muscle dysfunction, egg-laying deficits, or reduced lifespan. Moreover, distinct measures of proteotoxicity were independently modified by the genetic background. CONCLUSIONS: Resistance to protein aggregation and the ability to restrict its associated cellular dysfunction are independently controlled by the natural variation in genetic background, revealing important new considerations in the search for targets for therapeutic intervention in conformational diseases. Thus, our C. elegans model can serve as a powerful tool to dissect the contribution of natural variation to individual susceptibility to proteotoxicity.Please see related commentary by Kaeberlein, http://www.biomedcentral.com/1741-7007/11/102.


Assuntos
Caenorhabditis elegans/genética , Modelos Animais de Doenças , Variação Genética , Doenças Neurodegenerativas/genética , Peptídeos/genética , Alelos , Animais , Proteínas de Caenorhabditis elegans/genética
4.
mBio ; 14(5): e0170723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737612

RESUMO

IMPORTANCE: Inflammasomes are essential for host defense against intracellular bacterial pathogens like Legionella, as they activate caspases, which promote cytokine release and cell death to control infection. In mice, interferon (IFN) signaling promotes inflammasome responses against bacteria by inducing a family of IFN-inducible GTPases known as guanylate-binding proteins (GBPs). Within murine macrophages, IFN promotes the rupture of the Legionella-containing vacuole (LCV), while GBPs are dispensable for this process. Instead, GBPs facilitate the lysis of cytosol-exposed Legionella. In contrast, the functions of IFN and GBPs in human inflammasome responses to Legionella are poorly understood. We show that IFN-γ enhances inflammasome responses to Legionella in human macrophages. Human GBP1 is required for these IFN-γ-driven inflammasome responses. Furthermore, GBP1 co-localizes with Legionella and/or LCVs in a type IV secretion system (T4SS)-dependent manner and promotes damage to the LCV, which leads to increased exposure of the bacteria to the host cell cytosol. Thus, our findings reveal species- and pathogen-specific differences in how GBPs function to promote inflammasome responses.


Assuntos
Legionella pneumophila , Legionella , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Legionella/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte/metabolismo , Transdução de Sinais , Legionella pneumophila/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo
5.
Cell Rep ; 22(12): 3115-3125, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562168

RESUMO

Genetic instability of the mitochondrial genome (mtDNA) plays an important role in human aging and disease. Thus far, it has proven difficult to develop successful treatment strategies for diseases that are caused by mtDNA instability. To address this issue, we developed a model of mtDNA disease in the nematode C. elegans, an animal model that can rapidly be screened for genes and biological pathways that reduce mitochondrial pathology. These worms recapitulate all the major hallmarks of mtDNA disease in humans, including increased mtDNA instability, loss of respiration, reduced neuromuscular function, and a shortened lifespan. We found that these phenotypes could be rescued by intervening in numerous biological pathways, including IGF-1/insulin signaling, mitophagy, and the mitochondrial unfolded protein response, suggesting that it may be possible to ameliorate mtDNA disease through multiple molecular mechanisms.


Assuntos
Caenorhabditis elegans/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Animais , Progressão da Doença , Camundongos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA