Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(11): 4822-4827, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804186

RESUMO

Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.

2.
Nat Commun ; 13(1): 5057, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030269

RESUMO

Subsea permafrost represents a large carbon pool that might be or become a significant greenhouse gas source. Scarcity of observational data causes large uncertainties. We here use five 21-56 m long subsea permafrost cores from the Laptev Sea to constrain organic carbon (OC) storage and sources, degradation state and potential greenhouse gas production upon thaw. Grain sizes, optically-stimulated luminescence and biomarkers suggest deposition of aeolian silt and fluvial sand over 160 000 years, with dominant fluvial/alluvial deposition of forest- and tundra-derived organic matter. We estimate an annual thaw rate of 1.3 ± 0.6 kg OC m-2 in subsea permafrost in the area, nine-fold exceeding organic carbon thaw rates for terrestrial permafrost. During 20-month incubations, CH4 and CO2 production averaged 1.7 nmol and 2.4 µmol g-1 OC d-1, providing a baseline to assess the contribution of subsea permafrost to the high CH4 fluxes and strong ocean acidification observed in the region.


Assuntos
Gases de Efeito Estufa , Pergelissolo , Carbono , Concentração de Íons de Hidrogênio , Água do Mar , Solo
3.
Methods Protoc ; 2(4)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766314

RESUMO

The grain transfer protocol presents a step-by-step guide on how to successfully transfer positioned grains from a single-grain luminescence disc to a scanning electron microscope (SEM) specimen stub and how to transport them between laboratories. Single-grain luminescence analysis allows the determination of luminescence characteristics for individual sand-sized grains. By combining such luminescence data with other grain properties such as geochemical composition, shape, or structure also at single-grain level, it is possible to investigate factors controlling luminescence signals or study other material properties. The non-luminescence properties are typically measured in another instrument; thus, grains need to be transferred between machines and sample holders, and sometimes also between laboratories. It is then important that the position of each grain is known and stable so that the properties from the same grain are compared. By providing an easily observable orientation marker on the specimen stub, the hundred numbered grains from the single-grain disc can be transferred and later identified when analyzed in the SEM.

4.
Sci Total Environ ; 485-486: 12-22, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24704952

RESUMO

To delineate arsenic (As) safe aquifer(s) within shallow depth, the present study has investigated the shallow hydrostratigraphic framework over an area of 100 km(2) at Chakdaha Block of Nadia District, West Bengal. Drilling of 29 boreholes and subsequent hydrostratigraphic modeling has identified three types of aquifer within 50 m below ground level (bgl). Aquifer-1 represents a thick paleochannel sequence, deposited parallel to the River Hooghly and Ichamati. Aquifer-2 is formed locally within the overbank deposits in the central floodplain area and its vertical extension is strictly limited to 25 m bgl. Aquifer-3 is distributed underneath the overbank deposits and represents an interfluvial aquifer of the area. Aquifer-3 is of Pleistocene age (~70 ka), while aquifer-1 and 2 represent the Holocene deposits (age <9.51 ka), indicating that there was a major hiatus in the sediment deposition after depositing the aquifer-3. Over the area, aquifer-3 is markedly separated from the overlying Holocene deposits by successive upward sequences of brown and olive to pale blue impervious clay layers. The groundwater quality is very much similar in aquifer-1 and 2, where the concentration of As and Fe very commonly exceeds 10 µg/L and 5 mg/L, respectively. Based on similar sediment color, these two aquifers have jointly been designated as the gray sand aquifer (GSA), which constitutes 40% (1.84×10(9) m(3)) of the total drilled volume (4.65×10(9) m(3)). In aquifer-3, the concentration of As and Fe is very low, mostly <2 µg/L and 1mg/L, respectively. This aquifer has been designated as the brown sand aquifer (BSA) according to color of the aquifer materials and represents 10% (4.8×10(8) m(3)) of the total drilled volume. This study further documents that though the concentration of As is very low at BSA, the concentration of Mn often exceeds the drinking water guidelines.


Assuntos
Arsênio/análise , Água Potável/química , Monitoramento Ambiental , Água Subterrânea/química , Poluentes Químicos da Água/análise , Abastecimento de Água/estatística & dados numéricos , Índia , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA