Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555272

RESUMO

Novelmanganese(II), iron(III), cobalt(II), nickel(II), and copper(II) chelates were synthesized and studied using elemental analysis (EA), infrared spectroscopy, mass spectrometry, ultraviolet-visible spectroscopy, and conductivity, as well as magnetic measurements and thermogravimetric analysis (TG). The azo-ligand 1-[(4-nitrophenyl)diazenyl]-2-naphthol (HL) chelates to the metal ions via the nitrogen and oxygen centers of the azo group and the hydroxyl, respectively. The amounts of H2O present and its precise position were identified by thermal analysis. Density functional theory (DFT) was employed to theoretically elucidate the molecular structures of the ligand and the metal complexes. Furthermore, the quantum chemical parameters were also evaluated. The antimicrobial properties were evaluated against a group of fungal and bacterial microbes. Interestingly, the bioactivity of the complexes is enhanced compared to free ligands. Within this context, the CuL complex manifested the lowest activity, whereas the FeL complex had the greatest. Molecular docking was used to foretell the drugs' binding affinity for the structure of Escherichia coli (PDB ID: 1hnj). Protein-substrate interactions were resolved, and binding energies were accordingly calculated.


Assuntos
Complexos de Coordenação , Cobre , Cobre/química , Níquel/química , Ferro/química , Manganês/química , Cobalto/química , Simulação de Acoplamento Molecular , Ligantes , Espectrofotometria Infravermelho , Quelantes , Complexos de Coordenação/química
2.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296495

RESUMO

In the current study, new benzimidazole-based 1,3,4-oxadiazole derivatives have been synthesized and characterized by NMR, IR, MS, and elemental analysis. The final compounds were screened for cytotoxicity against MDA-MB-231, SKOV3, and A549 cell lines and EGFR for inhibitory activities. Compounds 10 and 13 were found to be the most active against all the tested cell lines, comparable to doxorubicin, and exhibited significant inhibition on EGFR kinase, with IC50 0.33 and 0.38 µM, respectively, comparable to erlotinib (IC50 0.39 µM). Furthermore, these two compounds effectively suppressed cell cycle progression and induced cell apoptosis in MDA-MB-231, SKOV3, and A549 cell lines. The docking studies revealed that these compounds showed interactions similar to erlotinib at the EGFR site. It can be concluded that the synthesized molecules effectively inhibit EGFR, can arrest the cell cycle, and may trigger apoptosis and therefore, could be used as lead molecules in the development of new anticancer agents targeting EGFR kinase.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Ensaios de Seleção de Medicamentos Antitumorais , Cloridrato de Erlotinib/farmacologia , Inibidores de Proteínas Quinases/química , Receptores ErbB/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Proliferação de Células , Apoptose , Pontos de Checagem do Ciclo Celular , Benzimidazóis/farmacologia , Doxorrubicina/farmacologia , Relação Estrutura-Atividade
3.
AAPS PharmSciTech ; 22(5): 177, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34128106

RESUMO

Fluvastatin (FLV) is known to inhibit the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), which is over-expressed in various cancers. FLV has been reported to decrease cancer development and metastasis. However, because of low bioavailability, extensive first-pass metabolism and short half-life of FLV (1.2 h), it is not appropriate for clinical application. Therefore, FLV-loaded emulsomes were formulated and optimized using Box-Behnken experimental design to achieve higher efficiency of formulation. Antitumor activity of optimized FLV-loaded emulsomes was evaluated in prostate cancer cells using cell cytotoxicity, apoptotic activity, cell cycle analysis, and enzyme-linked immunosorbent assay. The FLV-loaded emulsomes exhibited a monodispersed size distribution with a mean particle size less than 100 nm as measured by zetasizer. The entrapment efficiency was found to be 93.74% with controlled drug release profile. FLV-EMLs showed a significant inhibitory effect on the viability of PC3 cells when compared to the free FLV (P < 0.0025). Furthermore, FLV-EMLs showed significant arrest in G2/M and increase in percentage of apoptotic cells as compared to free FLV. FLV-EMLs were more effective than free FLV in reducing mitochondrial membrane potential and increase in caspase-3 activity. These results suggesting that FLV-EMLs caused cell cycle arrest which clarifies its significant antiproliferative effect compared to the free drug. Therefore, optimized FLV-EMLs may be an effective carrier for FLV in prostate cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Citotoxinas/farmacologia , Portadores de Fármacos/farmacologia , Fluvastatina/farmacologia , Neoplasias da Próstata , Antineoplásicos/síntese química , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citotoxinas/síntese química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/síntese química , Fluvastatina/síntese química , Humanos , Masculino , Células PC-3 , Tamanho da Partícula
5.
Tissue Eng Regen Med ; 21(5): 711-721, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520636

RESUMO

BACKGROUND: In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability. METHODS: Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit-8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability. RESULTS: The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern. CONCLUSION: Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for developing forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.


Assuntos
Proliferação de Células , Escherichia coli , Ouro , Nanotubos , Titânio , Ouro/química , Ouro/farmacologia , Titânio/farmacologia , Titânio/química , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Escherichia coli/efeitos dos fármacos , Nanotubos/química , Linhagem Celular , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos
9.
ACS Omega ; 8(2): 2773-2779, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687111

RESUMO

Potentiometric and conductometric methods were successfully applied to elucidate the interaction of 10 ions, viz., Cr3+, Fe3+, La2+, Th4+, Co2+, Mn2+, Pd2+, Sr2+, Ti2+, and Zr2+, with the antihypertensive drug captopril (CAP) and its role to determine CAP in pure powder and tablet forms. The ionization constant of CAP and the generated complexes' stability constants (log K) were evaluated using potentiometric and conductometric methods at 25 ± 0.1 °C and 0.05 M ionic strength (I) of NaNO3 aqueous solution, and CAP was then determined in pure powder and tablet forms. Complexes having metal:ligand ratios of 1:1, 1:2, and/or 1:3 were produced, regardless of the type of the ligand or metal ions. Both the suggested potentiometric and conductometric procedures were utilized to confirm the stoichiometry of the M-CAP binary complexes formed. These two different techniques were utilized successfully to determine CAP in pure powder and tablet forms. Using the standard addition method (SAM) based on the Gran plot, CAP was satisfactorily determined throughout the concentration range of 0.83-13.04 mg/mL (SD = 0.20, R = 0.9986 (n = 5)), with a detection limit of 0.64 mg/mL (SD = 0.20, R = 0.9986 (n = 5)). In the presence of common tablet excipients, no interferences were observed. The percentage of CAP recovered from various dosage formulations (tablets) varied from 95.88 to 99.92%.

10.
Int J Pharm ; 602: 120614, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887391

RESUMO

Stability testing is essential in the pharmaceutical industry to determine product shelf- life and the conditions under which drug products should be stored. Stability testing involves a complex set of procedures, considerable cost, time, and scientific expertise to build quality, efficacy and safety in a drug formulation. This paper highlights a new complementary approach to stability testing called Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS). BARDS measurements are based on reproducible changes in the compressibility of a solvent during dissolution. It is monitored acoustically via associated changes in the frequency of induced acoustic resonances. This study presents a novel approach to track the change of various drug formulations to determine the formulation's stability. Pellets, tablet and multiple-unit pellet system (MUPS) formulations were investigated to examine the effect of polymer coating and formulation core degradation over time. In combination with minimal usage of Ultra Violet - Visible Spectroscopy, BARDS can effectively track these changes. The technique offers a rapid approach to characterizing pharmaceutical formulations. BARDS can enable rapid development of solid drug formulation dissolution and disintegration testing as an In-Process Control test and drug stability analysis. The data show that a solid oral dose formulation has an intrinsic acoustic signature specific to the method of manufacture, excipient composition and elapsed time since the production of a product. BARDS data are also indicative of which aspect of a formulation may be unstable, whether a coating, sub-coating or core. It is potentially a time-efficient, cost-effective and greener approach to testing coating stability, disintegration and overall formulation stability.


Assuntos
Acústica , Excipientes , Solubilidade , Análise Espectral , Comprimidos
11.
Sci Rep ; 11(1): 12643, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135361

RESUMO

The trade in falsified medicine has increased significantly and it is estimated that global falsified sales have reached $100 billion in 2020. The EU Falsified Medicines Directive states that falsified medicines do not only reach patients through illegal routes but also via the legal supply chain. Falsified medicines can contain harmful ingredients. They can also contain too little or too much active ingredient or no active ingredient at all. BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy) harnesses an acoustic phenomenon associated with the dissolution of a sample (tablet or powder). The resulting acoustic spectrum is unique and intrinsic to the sample and can be used as an identifier or signature profile. BARDS was evaluated in this study to determine whether a product is falsified or genuine in a rapid manner and at lower cost than many existing technologies. A range of genuine and falsified medicines, including falsified antimalarial tablets from south-east Asia, were tested, and compared to their counterpart genuine products. Significant differences between genuine and falsified doses were found in their acoustic signatures as they disintegrate and dissolve. Principal component analysis was employed to differentiate between the genuine and falsified medicines. This demonstrates that the tablets and capsules included here have intrinsic acoustic signatures which could be used to screen the quality of medicines.


Assuntos
Medicamentos Falsificados/análise , Análise Espectral/métodos , Pós/análise , Comprimidos/análise
12.
Int J Nanomedicine ; 16: 3889-3905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135583

RESUMO

INTRODUCTION: Delayed wound healing represents a common health hazard. Traditional herbal products have been often utilized to promote wound contraction. The current study aimed at assessing the wound healing activity of Opuntia ficus-indica seed oil (OFI) and its self-nanoemulsifying drug delivery system (OFI-SNEDDS) formula in a rat model of full-thickness skin excision. METHODS: Based on droplet size, an optimized OFI-SNEDDS formula was prepared and used for subsequent evaluation. Wound healing activity of OFI and OFI-SNEDDS was studied in vivo. RESULTS: The optimized OFI-SNEDDS formula droplet size was 50.02 nm. The formula exhibited superior healing activities as compared to regular OFI seed oil-treated rats at day 14 of wounding. This effect was further confirmed by histopathological examinations of H&E and Masson's Trichrome-stained skin sections. Moreover, OFI-SNEDDS showed the highest antioxidant and anti-inflammatory activities as compared to OFI seed oil-treated animals. Both OFI and OFI-SNEDDS significantly enhanced hydroxyproline skin content and upregulated Col1A1 mRNA expression, accompanied by enhanced expression of transforming factor-beta (TGF-ß). Further, OFI-SNEDDS improved angiogenesis as evidenced by increased expression of vascular endothelial growth factor (VEGF). CONCLUSION: OFI possesses wound healing properties that are enhanced by self-emulsification of the oil into nano-droplets. The observed activity can be attributed, at least partly, to its anti-inflammatory, pro-collagen and angiogenic properties.


Assuntos
Emulsões/química , Opuntia/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/farmacologia , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Sistemas de Liberação de Medicamentos , Emulsões/farmacologia , Hidroxiprolina/metabolismo , Masculino , Óleos de Plantas/administração & dosagem , Ratos Wistar , Sementes/química , Pele/efeitos dos fármacos , Pele/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Cicatrização/genética
13.
Pharmaceutics ; 12(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32604984

RESUMO

Statins, including simvastatin (SMV), are commonly used for the control of hyperlipidaemia and have also proven therapeutic and preventative effects in cardiovascular diseases. Besides that, there is an emerging interest in their use as antineoplastic drugs as demonstrated by different studies showing their cytotoxic activity against different cancer cells. In this study, SMV-loaded emulsomes (SMV-EMLs) were formulated and evaluated for their cytotoxic activity in MCF-7 breast cancer cells. The emulsomes were prepared using a modified thin-film hydration technique. A Box-Behnken model was used to investigate the impact of formulation conditions on vesicle size and drug entrapment. The optimized formulation showed a spherical shape with a vesicle size of 112.42 ± 2.1 nm and an entrapment efficiency of 94.34 ± 1.11%. Assessment of cytotoxic activities indicated that the optimized SMV-EMLs formula exhibited significantly lower half maximal inhibitory concentration (IC50) against MCF-7 cells. Cell cycle analysis indicated the accumulation of cells in the G2-M phase as well as increased cell fraction in the pre-G1 phase, suggesting an enhancement of anti-apoptotic activity of SMV. The staining of cells with Annex V revealed an increase in early and late apoptosis, in line with the increased cellular content of caspase-3 and Bax. In addition, the mitochondrial membrane potential (MMP) was significantly decreased. In conclusion, SMV-EMLs demonstrated superior cell death-inducing activity against MCF-7 cells compared to pure SMV. This is mediated, at least in part, by enhanced pro-apoptotic activity and MMP modulation of SMV.

14.
Pharmaceutics ; 12(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660035

RESUMO

This study aimed at improving the targeting and cytotoxic effect of ellagic acid (EA) on colon cancer cells. EA was encapsulated in chitosan (CHIT) polymers then coated by eudragit S100 (ES100) microparticles. The release of EA double-coated microparticles (MPs) was tested at simulative pH values. Maximum release was observed at 24 h and pH 7.4. The cytotoxicity of EA MPs on HCT 116 colon cancer cells was synergistically improved as compared with raw EA. Cell-cycle analysis by flow cytometry suggested enhanced G2-M phase colon cancer cell accumulation. In addition, a significantly higher cell fraction was observed in the pre-G phase, which highlighted the enhancement of the proapoptotic activity of EA formulated in the double-coat mixture. Annexin-V staining was used for substantiation of the observed cell-death-inducing activity. Cell fractions were significantly increased in early, late, and total cell death. This was backed by high elevation in cellular content of caspase 3. Effectiveness of the double-coated EA to target colonic tissues was confirmed using real-time iohexol dye X-ray radiography. In conclusion, CHIT loaded with EA and coated with ES100 formula exhibits improved colon targeting as well as enhanced cytotoxic and proapoptotic activity against HCT 116 colon cancer when compared with the administration of raw EA.

15.
Nanomaterials (Basel) ; 10(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610539

RESUMO

Flibanserin (FLB) is a nonhormonal medicine approved by the Food and Drug Administration (FDA) to treat the hypoactive sexual appetite disorder in females. However, the peroral administration of the medicine is greatly affected by its poor bioavailability as a result of its extensive first-pass effect and poor solubility. Aiming at circumventing these drawbacks, this work involves the formulation of optimized FLB transfersome (TRF) loaded intranasal hydrogel. Box-Behnken design was utilized for the improvement of FLB TRFs with decreased size. The FLB-to-phospholipid molar ratio, the edge activator hydrophilic lipophilic balance, and the pH of the hydration medium all exhibited significant effects on the TRF size. The optimized/developed TRFs were unilamellar in shape. Hydroxypropyl methyl cellulose based hydrogel filled with the optimized FLB TRFs exhibited an improved ex vivo permeation when compared with the control FLB-loaded hydrogel. In addition, the optimized TRF-loaded hydrogel exhibited higher bioavailability and enhanced brain delivery relative to the control hydrogel following intranasal administration in Wistar rats. The results foreshadow the possible potential application of the proposed intranasal optimized FLB-TRF-loaded hydrogel to increase the bioavailability and nose-to-brain delivery of the drug.

16.
Int J Pharm ; 568: 118559, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351177

RESUMO

Monitoring of the coating end-point of functional coatings during the coating application process is desirable. Since currently available PAT methods require expensive test equipment, there is a need for a rapid test that can easily be applied without major investment. BARDS is a novel technique that has the potential to economise the production process of these kinds of pellet and tablet formulations. The thickness of a controlled release coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract or other targeted functionalities such as taste masking or moisture protection. Correspondingly, the amount of drug per unit mass of pellets decreases with increasing thickness of the functional coating. In this study, the functional polymer loading of the coating process is investigated by testing pellets via BARDS technology (Broadband Acoustic Resonance Dissolution Spectroscopy). The technique offers a rapid approach (<200 s) to characterising functional coatings at-line during their manufacture. Measurements are based on reproducible changes in the compressibility of a solvent during dissolution which is monitored acoustically via associated changes in the frequency of induced acoustic resonances. In case of enteric coatings a steady state acoustic lag time is associated with the erosion of the enteric coatings in acidic dissolution test media. This lag time is indicative of the coating layer thickness, assuming that the quality of the film coating is high. BARDS represents a possible future surrogate test for IPC testing, as a PAT method and possibly also for conventional USP dissolution testing. BARDS data correlate directly with the thickness of the functional coating, its integrity and also with the drug loading as validated by UV-Vis spectroscopy.


Assuntos
Ácidos Polimetacrílicos/química , Análise Espectral/métodos , Acústica , Cafeína , Liberação Controlada de Fármacos , Saliva/química , Paladar
17.
Int J Pharm ; 544(1): 31-38, 2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-29655796

RESUMO

There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC.


Assuntos
Análise Espectral/métodos , Comprimidos com Revestimento Entérico/química , Acústica , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Preparações de Ação Retardada/química , Concentração de Íons de Hidrogênio , Omeprazol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA