Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 264: 110267, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825071

RESUMO

Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19 , Interferon gama , Receptores CCR6 , Receptores CXCR3 , SARS-CoV-2 , Humanos , Receptores CCR6/imunologia , Receptores CCR6/metabolismo , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Linfócitos T CD4-Positivos/imunologia , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , SARS-CoV-2/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto
2.
Clin Infect Dis ; 76(3): e155-e162, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869848

RESUMO

BACKGROUND: Immune dysregulation in individuals with Down syndrome (DS) leads to an increased risk for hospitalization and death due to coronavirus disease 2019 (COVID-19) and may impair the generation of protective immunity after vaccine administration. METHODS: The cellular and humoral responses of 55 individuals with DS who received a complete SARS-CoV-2 vaccination regime at 1 to 3 (visit [V 1]) and 6 (V2) months were characterized. RESULTS: SARS-CoV-2-reactive CD4+ and CD8+ T lymphocytes with a predominant Th1 phenotype were observed at V1 and increased at V2. Likewise, an increase in SARS-CoV-2-specific circulating Tfh (cTfh) cells and CD8+ CXCR5+ PD-1hi lymphocytes was already observed at V1 after vaccine administration. Specific immunoglobulin G (IgG) antibodies against SARS-CoV-2 S protein were detected in 96% and 98% of subjects at V1 and V2, respectively, although IgG titers decreased significantly between both time points. CONCLUSIONS: Our findings show that DS individuals develop an effective immune response to usual regimes of SARS-CoV-2 vaccination.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Síndrome de Down , Síndrome de Quebra de Nijmegen , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade , Imunoglobulina G , SARS-CoV-2 , Vacinação , Adulto
3.
Clin Immunol ; 256: 109806, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827267

RESUMO

The study of phenotypic and functional characteristics of immune cells involved in host response to SARS-CoV-2 is relevant for understanding COVID-19 pathogenesis and individual differences in disease progression. We have analyzed chemokine receptor expression in SARS-CoV-2-specific CD4+ T lymphocytes from vaccinated donors, and have found an increase of CCR9+ and CCR6+ cells. CCR9+ specific CD4+ cells are enriched in T regulatory (Treg) lymphocytes. These cells specifically show heterogeneous regulatory activity, associated with different profiles of CCR9/CCR6 expression, individual differences in IL-10 and IL-17 production, and variable FoxP3 and Notch4 expression. A higher heterogeneity in FoxP3 is selectively observed in convalescent individuals within vaccinated population. Accordingly, SARS-CoV-2-specific CD4+ lymphocytes from COVID-19 patients are also enriched in CCR9+ and CCR6+ cells. CCR6+ specific Treg lymphocytes are mainly increased in critically ill individuals, indicating a preferential role for these cells in lung injury pathogenesis. We provide experimental evidence for a SARS-CoV-2-specific Treg population with increased plasticity, which may contribute to the differential pathogenic response against SARS-CoV-2 among individuals, and underlie the development of autoimmune conditions following SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Linfócitos T CD4-Positivos , Receptores de Quimiocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores
4.
Eur J Immunol ; 52(3): 447-461, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935145

RESUMO

Effective function of CD8+ T cells and enhanced innate activation of DCs in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of the combination of 2´3´-c´diAM(PS)2 and Poly I:C as potential adjuvants capable of potentiating DC´s abilities to induce polyfunctional HIV-1 specific CD8+ T-cell responses in vitro and in vivo using a humanized BLT mouse model. Adjuvant combination enhanced TBK-1 phosphorylation and IL-12 and IFN-ß expression on DC and increased their ability to activate polyfunctional HIV-1-specific CD8+ T cells in vitro. Moreover, higher proportions of hBLT mice vaccinated with ADJ-DC exhibited less severe CD4+ T-cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to LN, and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, priming of DC with PolyI:C and STING agonists might be useful for future HIV-1 vaccine studies.


Assuntos
Vacinas contra a AIDS , HIV-1 , Vacinas contra a AIDS/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Dendríticas , Proteína do Núcleo p24 do HIV/metabolismo , Tecido Linfoide , Camundongos , Poli I-C/farmacologia
5.
Eur J Immunol ; 51(11): 2633-2640, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358329

RESUMO

Here, we describe a new, simple, highly multiplexed serological test that generates a more complete picture of seroconversion than single antigen-based assays. Flow cytometry is used to detect multiple Ig isotypes binding to four SARS-CoV-2 antigens: the Spike glycoprotein, its RBD fragment (the main target for neutralizing antibodies), the nucleocapsid protein, and the main cysteine-like protease in a single reaction. Until now, most diagnostic serological tests measured antibodies to only one antigen and in some laboratory-confirmed patients no SARS-CoV-2-specific antibodies could be detected. Our data reveal that while most patients respond against all the viral antigens tested, others show a marked bias to make antibodies against either proteins exposed on the viral particle or those released after cellular infection. With this assay, it was possible to discriminate between patients and healthy controls with 100% confidence. Analysing the response of multiple Ig isotypes to the four antigens in combination may also help to establish a correlation with the severity degree of disease. A more detailed description of the immune responses of different patients to SARS-CoV-2 virus might provide insight into the wide array of clinical presentations of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Citometria de Fluxo/métodos , Antígenos Virais/imunologia , COVID-19/imunologia , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2 , Sensibilidade e Especificidade , Testes Sorológicos
6.
Eur J Immunol ; 51(3): 634-647, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33251605

RESUMO

SARS-CoV-2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID-19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID-19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56- CD16+ NK-cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID-19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.


Assuntos
Linfócitos B/imunologia , COVID-19/patologia , Imunoglobulinas/sangue , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Idoso , COVID-19/imunologia , Complemento C3/análise , Complemento C4/análise , Complemento C5/análise , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Contagem de Linfócitos , Linfopenia/imunologia , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia
7.
J Immunol ; 205(11): 3130-3140, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148714

RESUMO

Currently, there is a need for reliable tests that allow identification of individuals that have been infected with SARS-CoV-2 even if the infection was asymptomatic. To date, the vast majority of the serological tests for SARS-CoV-2-specific Abs are based on serum detection of Abs to either the viral spike glycoprotein (the major target for neutralizing Abs) or the viral nucleocapsid protein that is known to be highly immunogenic in other coronaviruses. Conceivably, exposure of Ags released from infected cells could stimulate Ab responses that might correlate with tissue damage and, hence, they may have some value as a prognostic indicator. We addressed whether other nonstructural viral proteins, not incorporated into the infectious viral particle, specifically the viral cysteine-like protease, might also be potent immunogens. Using ELISA tests, coating several SARS-CoV-2 proteins produced in vitro, we describe that COVID-19 patients make high titer IgG, IgM, and IgA Ab responses to the Cys-like protease from SARS-CoV-2, also known as 3CLpro or Mpro, and it can be used to identify individuals with positive serology against the coronavirus. Higher Ab titers in these assays associated with more-severe disease, and no cross-reactive Abs against prior betacoronavirus were found. Remarkably, IgG Abs specific for Mpro and other SARS-CoV-2 Ags can also be detected in saliva. In conclusion, Mpro is a potent Ag in infected patients that can be used in serological tests, and its detection in saliva could be the basis for a rapid, noninvasive test for COVID-19 seropositivity.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/metabolismo , Infecções por Coronavirus/sangue , Cisteína Proteases/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Pneumonia Viral/sangue , Saliva/metabolismo , Adulto , Idoso , COVID-19 , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
8.
J Allergy Clin Immunol ; 147(1): 72-80.e8, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010257

RESUMO

BACKGROUND: Patients with coronavirus disaese 2019 (COVID-19) can develop a cytokine release syndrome that eventually leads to acute respiratory distress syndrome requiring invasive mechanical ventilation (IMV). Because IL-6 is a relevant cytokine in acute respiratory distress syndrome, the blockade of its receptor with tocilizumab (TCZ) could reduce mortality and/or morbidity in severe COVID-19. OBJECTIVE: We sought to determine whether baseline IL-6 serum levels can predict the need for IMV and the response to TCZ. METHODS: A retrospective observational study was performed in hospitalized patients diagnosed with COVID-19. Clinical information and laboratory findings, including IL-6 levels, were collected approximately 3 and 9 days after admission to be matched with preadministration and postadministration of TCZ. Multivariable logistic and linear regressions and survival analysis were performed depending on outcomes: need for IMV, evolution of arterial oxygen tension/fraction of inspired oxygen ratio, or mortality. RESULTS: One hundred forty-six patients were studied, predominantly males (66%); median age was 63 years. Forty-four patients (30%) required IMV, and 58 patients (40%) received treatment with TCZ. IL-6 levels greater than 30 pg/mL was the best predictor for IMV (odds ratio, 7.1; P < .001). Early administration of TCZ was associated with improvement in oxygenation (arterial oxygen tension/fraction of inspired oxygen ratio) in patients with high IL-6 (P = .048). Patients with high IL-6 not treated with TCZ showed high mortality (hazard ratio, 4.6; P = .003), as well as those with low IL-6 treated with TCZ (hazard ratio, 3.6; P = .016). No relevant serious adverse events were observed in TCZ-treated patients. CONCLUSIONS: Baseline IL-6 greater than 30 pg/mL predicts IMV requirement in patients with COVID-19 and contributes to establish an adequate indication for TCZ administration.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome da Liberação de Citocina , Interleucina-6/sangue , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/mortalidade , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida
9.
Angew Chem Int Ed Engl ; 58(10): 3067-3072, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30537383

RESUMO

The selective delivery of therapeutic and imaging agents to tumoral cells has been postulated as one of the most important challenges in the nanomedicine field. Meta-iodobenzilguanidine (MIBG) is widely used for the diagnosis of neuroblastoma (NB) due to its strong affinity for the norepinephrine transporter (NET), usually overexpressed on the membrane of malignant cells. Herein, a family of novel Y-shaped scaffolds has been synthesized, which have structural analogues of MIBG covalently attached at each end of the Y-structure. The cellular uptake capacity of these double-targeting ligands has been evaluated in vitro and in vivo, yielding one specific Y-shaped structure that is able to be engulfed by the malignant cells, and accumulates in the tumoral tissue, at significantly higher levels than the structure containing only one single targeting agent. This Y-shaped ligand can provide a powerful tool for the current treatment and diagnosis of this disease.


Assuntos
3-Iodobenzilguanidina/análogos & derivados , Portadores de Fármacos/química , Neuroblastoma/diagnóstico por imagem , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/análise , 3-Iodobenzilguanidina/metabolismo , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Imagem Óptica
10.
EMBO J ; 33(10): 1117-33, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24596247

RESUMO

Macrophages contribute to tissue homeostasis and influence inflammatory responses by modulating their phenotype in response to the local environment. Understanding the molecular mechanisms governing this plasticity would open new avenues for the treatment for inflammatory disorders. We show that deletion of calcineurin (CN) or its inhibition with LxVP peptide in macrophages induces an anti-inflammatory population that confers resistance to arthritis and contact hypersensitivity. Transfer of CN-targeted macrophages or direct injection of LxVP-encoding lentivirus has anti-inflammatory effects in these models. Specific CN targeting in macrophages induces p38 MAPK activity by downregulating MKP-1 expression. However, pharmacological CN inhibition with cyclosporin A (CsA) or FK506 did not reproduce these effects and failed to induce p38 activity. The CN-inhibitory peptide VIVIT also failed to reproduce the effects of LxVP. p38 inhibition prevented the anti-inflammatory phenotype of CN-targeted macrophages, and mice with defective p38-activation were resistant to the anti-inflammatory effect of LxVP. Our results identify a key role for CN and p38 in the modulation of macrophage phenotype and suggest an alternative treatment for inflammation based on redirecting macrophages toward an anti-inflammatory status.


Assuntos
Calcineurina/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Macrófagos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Calcineurina/genética , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Fosfatase 1 de Especificidade Dupla/genética , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Osteoclastos/citologia , Osteoclastos/metabolismo , Fagocitose/genética , Fagocitose/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
Circ Res ; 117(2): e13-26, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25963716

RESUMO

RATIONALE: Aortic dissection or rupture resulting from aneurysm causes 1% to 2% of deaths in developed countries. These disorders are associated with mutations in genes that affect vascular smooth muscle cell differentiation and contractility or extracellular matrix composition and assembly. However, as many as 75% of patients with a family history of aortic aneurysms do not have an identified genetic syndrome. OBJECTIVE: To determine the role of the protease MMP17/MT4-MMP in the arterial wall and its possible relevance in human aortic pathology. METHODS AND RESULTS: Screening of patients with inherited thoracic aortic aneurysms and dissections identified a missense mutation (R373H) in the MMP17 gene that prevented the expression of the protease in human transfected cells. Using a loss-of-function genetic mouse model, we demonstrated that the lack of Mmp17 resulted in the presence of dysfunctional vascular smooth muscle cells and altered extracellular matrix in the vessel wall; and it led to increased susceptibility to angiotensin-II-induced thoracic aortic aneurysm. We also showed that Mmp17-mediated osteopontin cleavage regulated vascular smooth muscle cell maturation via c-Jun N-terminal kinase signaling during aorta wall development. Some features of the arterial phenotype were prevented by re-expression of catalytically active Mmp17 or the N-terminal osteopontin fragment in Mmp17-null neonates. CONCLUSIONS: Mmp17 proteolytic activity regulates vascular smooth muscle cell phenotype in the arterial vessel wall, and its absence predisposes to thoracic aortic aneurysm in mice. The rescue of part of the vessel-wall phenotype by a lentiviral strategy opens avenues for therapeutic intervention in these life-threatening disorders.


Assuntos
Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Metaloproteinases da Matriz Associadas à Membrana/fisiologia , Mutação de Sentido Incorreto , Adulto , Substituição de Aminoácidos , Angiotensina II , Animais , Aorta/embriologia , Aorta/patologia , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/terapia , Ruptura Aórtica/etiologia , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/metabolismo , Predisposição Genética para Doença , Terapia Genética , Vetores Genéticos/uso terapêutico , Células HEK293 , Humanos , Lentivirus/genética , Masculino , Metaloproteinases da Matriz Associadas à Membrana/química , Metaloproteinases da Matriz Associadas à Membrana/deficiência , Metaloproteinases da Matriz Associadas à Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Osteopontina/metabolismo , Conformação Proteica
13.
Angiogenesis ; 19(2): 217-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26951478

RESUMO

Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) is a regulator of mitochondrial oxidative metabolism and reactive oxygen species (ROS) homeostasis that is known to be inactivated in diabetic subjects. This study aimed to investigate the contribution of PGC-1α inactivation to the development of oxygen-induced retinopathy. We analyzed retinal vascular development in PGC-1α(-/-) mice. Retinal vasculature of PGC-1α(-/-) mice showed reduced pericyte coverage, a de-structured vascular plexus, and low perfusion. Exposure of PGC-1α(-/-) mice to hyperoxia during retinal vascular development exacerbated these vascular abnormalities, with extensive retinal hemorrhaging and highly unstructured areas as compared with wild-type mice. Structural analysis demonstrated a reduction in membrane-bound VE-cadherin, which was suggestive of defective intercellular junctions. Interestingly, PGC-1α(-/-) retinas showed a constitutive activation of the VEGF-A signaling pathway. This phenotype could be partially reversed by antioxidant administration, indicating that elevated production of ROS in the absence of PGC-1α could be a relevant factor in the alteration of the VEGF-A signaling pathway. Collectively, our findings suggest that PGC-1α control of ROS homeostasis plays an important role in the regulation of de novo angiogenesis and is required for vascular stability.


Assuntos
Vasos Sanguíneos/patologia , Estresse Oxidativo , Pericitos/metabolismo , Pericitos/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Camundongos Endogâmicos C57BL , Oxigênio , Perfusão , Retina/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
14.
Cell Mol Life Sci ; 72(16): 3097-113, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25935149

RESUMO

The bone is a complex connective tissue composed of many different cell types such as osteoblasts, osteoclasts, chondrocytes, mesenchymal stem/progenitor cells, hematopoietic cells and endothelial cells, among others. The interaction between them is finely balanced through the processes of bone formation and bone remodeling, which regulates the production and biological activity of many soluble factors and extracellular matrix components needed to maintain the bone homeostasis in terms of cell proliferation, differentiation and apoptosis. Osteosarcoma (OS) emerges in this complex environment as a result of poorly defined oncogenic events arising in osteogenic lineage precursors. Increasing evidence supports that similar to normal development, the bone microenvironment (BME) underlies OS initiation and progression. Here, we recapitulate the physiological processes that regulate bone homeostasis and review the current knowledge about how OS cells and BME communicate and interact, describing how these interactions affect OS cell growth, metastasis, cancer stem cell fate and therapy outcome.


Assuntos
Osso e Ossos/fisiologia , Microambiente Celular/fisiologia , Homeostase/fisiologia , Modelos Biológicos , Metástase Neoplásica/fisiopatologia , Osteossarcoma/fisiopatologia , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia
15.
Arterioscler Thromb Vasc Biol ; 34(10): 2310-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147342

RESUMO

OBJECTIVE: Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. APPROACH AND RESULTS: Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. CONCLUSIONS: Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.


Assuntos
Indutores da Angiogênese/farmacologia , Calcineurina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Proteínas de Ligação ao Cálcio , ATPases Transportadoras de Cálcio/deficiência , ATPases Transportadoras de Cálcio/genética , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células HEK293 , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/enzimologia , Isquemia/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
16.
Mol Ther ; 21(1): 119-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22760540

RESUMO

Administration of anti-inflammatory cytokines is a common therapeutic strategy in chronic inflammatory diseases. Gene therapy is an efficient method for delivering therapeutic molecules to target cells. Expression of the cell adhesion molecule E-selectin (ESEL), which is expressed in the early stages of inflammation, is controlled by proinflammatory cytokines, making its promoter a good candidate for the design of inflammation-regulated gene therapy vectors. This study describes an ESEL promoter (ESELp)-based lentiviral vector (LV) that drives localized transgene expression during inflammation. Mouse matrigel plug assays with ESELp-transduced endothelial cells showed that systemic lipopolysaccharide (LPS) administration selectively induces ESELp-controlled luciferase expression in vivo. Inflammation-specific induction was confirmed in a mouse model of arthritis, showing that this LV is repeatedly induced early in acute inflammation episodes and is downregulated during remission. Moreover, the local acute inflammatory response in this animal model was efficiently blocked by expression of the anti-inflammatory cytokine interleukin-10 (IL10) driven by our LV system. This inflammation-regulated expression system has potential application in the design of new strategies for the local treatment of chronic inflammatory diseases such as cardiovascular and autoimmune diseases.


Assuntos
Artrite/prevenção & controle , Vetores Genéticos , Inflamação/metabolismo , Interleucina-10/metabolismo , Lentivirus/genética , Zimosan/efeitos adversos , Animais , Artrite/induzido quimicamente , Colágeno , Combinação de Medicamentos , Mediadores da Inflamação/metabolismo , Laminina , Camundongos , Proteoglicanas , Transgenes
17.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453949

RESUMO

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Assuntos
COVID-19 , Inflamassomos , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , COVID-19/patologia , Inflamassomos/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleoproteínas/metabolismo , SARS-CoV-2/metabolismo
18.
NPJ Vaccines ; 9(1): 21, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291047

RESUMO

B and T cell responses were evaluated in patients with rheumatoid arthritis (RA) or psoriatic arthritis (PsA) after 1 or 2 weeks of methotrexate (MTX) withdrawal following each COVID-19 vaccine dose and compared with those who maintained MTX. Adult RA and PsA patients treated with MTX were recruited and randomly assigned to 3 groups: MTX-maintenance (n = 72), MTX-withdrawal for 1 week (n = 71) or MTX-withdrawal for 2 weeks (n = 73). Specific antibodies to several SARS-CoV-2 antigens and interferon (IFN)-γ and interleukin (IL)-21 responses were assessed. MTX withdrawal in patients without previous COVID-19 was associated with higher levels of anti-RBD IgG and neutralising antibodies, especially in the 2-week withdrawal group and with higher IFN-γ secretion upon stimulation with pools of SARS-CoV-2 S peptides. No increment of RA/PsA relapses was detected across groups. Our data indicate that two-week MTX interruption following COVID-19 vaccination in patients with RA or PsA improves humoral and cellular immune responses.

19.
Blood ; 118(3): 795-803, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21642596

RESUMO

The nuclear factor of activated T cells (NFAT) family of transcription factors plays important roles in many biologic processes, including the development and function of the immune and vascular systems. Cells usually express more than one NFAT member, raising the question of whether NFATs play overlapping roles or if each member has selective functions. Using mRNA knock-down, we show that NFATc3 is specifically required for IL2 and cyclooxygenase-2 (COX2) gene expression in transformed and primary T cells and for T-cell proliferation. We also show that NFATc3 regulates COX2 in endothelial cells, where it is required for COX2, dependent migration and angiogenesis in vivo. These results indicate that individual NFAT members mediate specific functions through the differential regulation of the transcription of target genes. These effects, observed on short-term suppression by mRNA knock-down, are likely to have been masked by compensatory effects in gene-knockout studies.


Assuntos
Ciclo-Oxigenase 2/genética , Interleucina-2/genética , Ativação Linfocitária/fisiologia , Fatores de Transcrição NFATC , Neovascularização Fisiológica/fisiologia , Linfócitos T/fisiologia , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Ciclo-Oxigenase 2/imunologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Interleucina-2/imunologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transcrição Gênica/fisiologia
20.
Front Immunol ; 14: 1231315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622111

RESUMO

Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells with an organization that resembles that of secondary lymphoid organs. Both structures share common developmental characteristics, although TLSs usually appear in chronically inflamed non-lymphoid tissues, such as tumors. TLSs contain diverse types of immune cells, with varying degrees of spatial organization that represent different stages of maturation. These structures support both humoral and cellular immune responses, thus the correlation between the existence of TLS and clinical outcomes in cancer patients has been extensively studied. The finding that TLSs are associated with better prognosis in some types of cancer has led to the design of therapeutic strategies based on promoting the formation of these structures. Agents such as chemokines, cytokines, antibodies and cancer vaccines have been used in combination with traditional antitumor treatments to enhance TLS generation, with good results. The induction of TLS formation therefore represents a novel and promising avenue for the treatment of a number of tumor types.


Assuntos
Vacinas Anticâncer , Neoplasias , Estruturas Linfoides Terciárias , Humanos , Linfócitos B , Neoplasias/terapia , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA