RESUMO
Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3ß/ß-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/ß-catenin signaling pathways.
Assuntos
1-Naftilisotiocianato , Colestase , Glicogênio Sintase Quinase 3 beta , NF-kappa B , Piridonas , Receptores Citoplasmáticos e Nucleares , Fator de Necrose Tumoral alfa , Via de Sinalização Wnt , Animais , Piridonas/farmacologia , NF-kappa B/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , 1-Naftilisotiocianato/toxicidade , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/tratamento farmacológico , Colestase/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos Endogâmicos C57BL , beta Catenina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologiaRESUMO
Unmethylated cytosine-guanine oligodeoxynucleotides (CpG ODNs) have a storied history as agonists for Toll-like receptor 9 (TLR9). CpG ODNs have shown promising antitumor effects in preclinical studies by inducing potent proinflammatory immune responses. However, clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure to CpG ODNs. We previously identified that glatiramer acetate (GA), an FDA-approved, lysine-rich polypeptide, could complex class B CpG into cationic nanoparticles which persist at the intratumoral injection site while mitigating the induction of systemic proinflammatory cytokines in mouse tumor models. To extend GA applications across subtypes of CpG ODN (class A, B, and C), we evaluated physiochemical properties and identified the immunological signaling of GA and its complexes with different classes of CpG ODNs. We compared the physiochemical characteristics of three types of GA-CpG nanoparticles, followed by assessments of cell uptake efficiency and endolysosomal trafficking. We then performed successive in vitro and in vivo assays to evaluate immunological discrepancies. Complexation with GA preserved the immunological activity of CpG ODN subtypes while encapsulating them into cationic spherical nanoparticles. GA improved the cellular uptake of CpG ODNs, generally increased retention in early endosomes, and amplified immunological responses. A subsequent in vivo experiment confirmed the achievement of potent tumor suppression while mitigating systemic immune-related toxicities. Together, these data help elucidate the noncanonical role of GA to serve as a nucleic acid delivery scaffold that can improve the efficacy and safety of CpG adjuvant for clinical cancer immunotherapy.
RESUMO
The current study explored the protective potential of kaempferol 3-sophoroside-7-glucoside (KSG) against acute lung injury (ALI). Pre-treatment with KSG effectively secured mice from ALI and showed similar efficaciousness to dexamethasone. KSG markedly increased the survival rate and alleviated lung pathological lesions induced by lipopolysaccharide (LPS). Furthermore, KSG attenuated differential and total cell counts in BALF (bronchoalveolar lavage fluid) and MPO (myeloperoxidase) activity. KSG counteracted the NF-κB (nuclear factor-κB) activation and significantly ameliorated the downstream inflammatory cytokine, TNF-α (tumor necrosis factor-α). Simultaneously, KSG suppressed the over-expression of NLRP3 (NOD-like receptor protein 3), caspase-1, and pro-inflammatory cytokine interleukin IL-1ß (interleukine-1ß) and prohibited the elevation of the pyroptotic parameter GSDMD-N (N-terminal domain of gasdermin D) induced by LPS challenge. In addition, KSG significantly enhanced Nrf2 (nuclear-factor erythroid-2-related factor) and HO-1 (heme-oxygenase-1) expression. Meanwhile, KSG mitigated lipid peroxidative markers (malondialdehyde, protein carbonyl and 4-hydroxynonenal) and boosted endogenous antioxidants (superoxide dismutase/reduced glutathione/catalase) in lung tissue. In silico analyses revealed that KSG disrupts Keap1-Nrf2 protein-protein interactions by binding to the KEAP1 domain, consequently activating Nrf2. Specifically, molecular docking demonstrated superior binding affinity of KSG to KEAP1 compared to the reference inhibitor, with docking scores of -9.576 and -6.633 Kcal/mol, respectively. Additionally, the MM-GBSA binding free energy of KSG (-67.25 Kcal/mol) surpassed that of the reference inhibitor (-56.36 Kcal/mol). Furthermore, MD simulation analysis revealed that the KSG-KEAP1 complex exhibits substantial and stable binding interactions with various amino acids over a duration of 100 ns. These findings showed the protective anti-inflammatory and anti-oxidative modulatory efficiencies of KSG that effectively counteracted LPS-induced ALI and encouraged future research and clinical applications of KSG as a protective strategy for ALI.
RESUMO
A dysregulation of the wound healing process can lead to the development of various intractable ulcers or excessive scar formation. Therefore it is essential to identify novel pharmacological strategies to promote wound healing and restore the mechanical integrity of injured tissue. The goal of the present study was to formulate a nano-complex containing melittin (MEL) and diclofenac (DCL) with the aim to evaluate their synergism and preclinical efficacy in an in vivo model of acute wound. After its preparation and characterization, the therapeutic potential of the combined nano-complexes was evaluated. MEL-DCL nano-complexes exhibited better regenerated epithelium, keratinization, epidermal proliferation, and granulation tissue formation, which in turn showed better wound healing activity compared to MEL, DCL, or positive control. The nano-complexes also showed significantly enhanced antioxidant activity. Treatment of wounded skin with MEL-DCL nano-complexes showed significant reduction of interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α (TNF-α) pro-inflammatory markers that was paralleled by a substantial increase in mRNA expression levels of collagen, type I, alpha 1 (Col1A1) and collagen, type IV, alpha 1 (Col4A1), and hydroxyproline content as compared to individual drugs. Additionally, MEL-DCL nano-complexes were able to significantly increase hypoxia-inducible factor 1-alpha (HIF-1α) and transforming growth factor beta 1 (TGF-ß1) proteins expression compared to single drugs or negative control group. SB431542, a selective inhibitor of type-1 TGF-ß receptor, significantly prevented in our in vitro assay the wound healing process induced by the MEL-DCL nano-complexes, suggesting a key role of TGF-ß1 in the wound closure. In conclusion, the nano-complex of MEL-DCL represents a novel pharmacological tool that can be topically applied to improve wound healing.
Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Citocinas/metabolismo , Diclofenaco/administração & dosagem , Hidrogéis/administração & dosagem , Meliteno/administração & dosagem , Nanoestruturas/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Sinergismo Farmacológico , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Queratinócitos/efeitos dos fármacos , Masculino , Ratos Wistar , Pele/efeitos dos fármacos , Pele/metabolismoRESUMO
Ellagic acid has recently attracted increasing attention regarding its role in the prevention and treatment of cancer. Surface functionalized nanocarriers have been recently studied for enhancing cancer cells' penetration and achieving better tumor-targeted delivery of active ingredients. Therefore, the present work aimed at investigating the potential of APA-functionalized emulsomes (EGA-EML-APA) for enhancing cytototoxic activity of EGA against human breast cancer cells. Phospholipon® 90 G: cholesterol molar ratio (PC: CH; X1, mole/mole), Phospholipon® 90 G: Tristearin weight ratio (PC: TS; X2, w/w) and apamin molar concentration (APA conc.; X3, mM) were considered as independent variables, while vesicle size (VS, Y1, nm) and zeta potential (ZP, Y2, mV) were studied as responses. The optimized formulation with minimized vs. and maximized absolute ZP was predicted successfully utilizing a numerical technique. EGA-EML-APA exhibited a significant cytotoxic effect with an IC50 value of 5.472 ± 0.21 µg/mL compared to the obtained value from the free drug 9.09 ± 0.34 µg/mL. Cell cycle profile showed that the optimized formulation arrested MCF-7 cells at G2/M and S phases. In addition, it showed a significant apoptotic activity against MCF-7 cells by upregulating the expression of p53, bax and casp3 and downregulating bcl2. Furthermore, NF-κB activity was abolished while the expression of TNfα was increased confirming the significant apoptotic effect of EGA-EML-APA. In conclusion, apamin-functionalized emulsomes have been successfully proposed as a potential anti-breast cancer formulation.
Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Apamina , Ácido Elágico/farmacologia , Excipientes , Humanos , Lipídeos , Células MCF-7 , Tamanho da PartículaRESUMO
Chromatographic investigation of the aerial parts of the Rhazya stricta (Apocynaceae) resulted in the isolation of two new monoterpene indole alkaloids, 6-nor-antirhine-N1-methyl (1) and razyamide (2), along with six known compounds, eburenine (3), epi-rhazyaminine (4), rhazizine (5), 20-epi-sitsirikine (6), antirhine (7), and 16-epi-stemmadenine-N-oxide (8). The chemical structures were established by various spectroscopic experiments. Compounds 1-8 exhibited cytotoxic effects against three cancer cells with IC50 values ranging between 5.1 ± 0.10 and 93.2 ± 9.73 µM against MCF-7; 5.1 ± 0.28 and 290.2 ± 7.50 µM against HepG2, and 3.1 ± 0.17 and 55.7 ± 4.29 µM against HeLa cells. Compound 2 showed the most potent cytotoxic effect against all cancer cell lines (MCF-7, HepG2 and HeLa with IC50 values = 5.1 ± 0.10, 5.1 ± 0.28, and 3.1 ± 0.17 µM, respectively). Furthermore, compound 2 revealed a significant increase in the apoptotic cell population of MCF-7, HepG2, and HeLa cells, with 31.4 ± 0.2%, 29.2 ± 0.5%, and 34.9 ± 0.6%, respectively. Compound 2 decreased the percentage of the phagocytic pathway on HepG2 cells by 15.0 ± 0.1%. These findings can explain the antiproliferative effect of compound 2.
Assuntos
Adenocarcinoma , Antineoplásicos Fitogênicos , Apocynaceae/química , Apoptose/efeitos dos fármacos , Citotoxinas , Monoterpenos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Calcanhar , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Células MCF-7 , Monoterpenos/química , Monoterpenos/farmacologiaRESUMO
In the present work, novel modality for lung cancer intervention has been explored. Primary literature has established the potential role of cyclooxygenase-2 (COX-2) inhibitor in regression of multiple forms of carcinomas. To overcome its poor water solubility and boost anticancer activity, etoricoxib (ETO) was chosen as a therapeutic candidate for repurposing and formulated into a nanoemulsion (NE). The prepared ETO loaded NE was characterized for the surface charge, droplet size, surface morphology, and in vitro release. The optimized ETO loaded NE was then investigated for its anticancer potential employing A549 lung cancer cell line via cytotoxicity, apoptotic activity, mitochondrial membrane potential activity, cell migration assay, cell cycle analysis, Caspase-3, 9, and p53 activity by ELISA and molecular biomarker analysis through RT-PCR test. The developed ETO-NE formulation showed adequate homogeneity in the droplet size distribution with polydispersity index (PDI) of (0.2 ± 0.03) and had the lowest possible droplet size (124 ± 2.91 nm) and optimal negative surface charge (-8.19 ± 1.51 mV) indicative of colloidal stability. The MTT assay results demonstrated that ETO-NE exhibited substantial anticancer activity compared to the free drug. The ETO-NE showed a substantially potent cytotoxic effect against lung cancer cells, as was evident from the commencement of apoptosis/necrotic cell death and S-phase cell cycle arrests in A549 cells. The study on these molecules through RT-PCR confirmed that ETO-NE is significantly efficacious in mitigating the abundance of IL-B, IL-6, TNF, COX-2, and NF-kB as compared to the free ETO and control group. The current study demonstrates that ETO-NE represents a feasible approach that could provide clinical benefits for lung cancer patients in the future.
Assuntos
Apoptose , Emulsões/química , Etoricoxib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Movimento Celular , Proliferação de Células , Etoricoxib/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatologia , Potencial da Membrana MitocondrialRESUMO
Therapeutic efficacy of antineoplastic agents possessing a selective target to the nucleus of the cancer cells could be enhanced through novel formulation approaches. Thus, towards improvement of anticancer potential of icariin (ICA) on pancreatic cancer, the drug was entrapped into the polymeric poly lactic-co-glycolic acid (PLGA) with polyethylene glycol (PEG) as diblock copolymer. Optimization of the formulation was done using Statgraphics software to standardize percentages of PEG-PLGA and tween 80 (TW80) to obtain the smallest particle size. The optimized formulation was found to be in nanometer size and low PDI (0.321). Optimized formula enhanced cytotoxicity and apoptotic potential, compared with ICA-raw, against pancreatic cancer cell lines (aspc-1). The entrapment efficiency of the polymeric micelles was 72.34 ± 2.3% with 93.1 ± 6.5% release of ICA within 72 h. There was a twofold increase in apoptosis and sevenfold increase in necrosis of aspc-1 cells when incubated with raw ICA compared to control cells. Further, loss of mitochondrial membrane potential (â50-fold) by the ICA-loaded PMs and free drug compared to control cells was found to be due to the generation of ROS. Findings of cell cycle analysis revealed the significant arrest of G2-M phase of aspc-1 cells when incubated with the optimized formulation. Simultaneously, a significantly increased number of cells in pre-G1 revealed maximum apoptotic potential of the drug when delivered via micellar formulation. Finally, upregulation of caspase-3 established the superiority of the PMs approach against pancreatic cancer. In summary, the acquired results highlighted the potentiality of PMs delivery tool for controlling the growth of pancreatic cancer cells for improved efficacy.
Assuntos
Nanopartículas , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Flavonoides , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Tamanho da Partícula , PolietilenoglicóisRESUMO
Fluvastatin (FLV) is known to inhibit the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), which is over-expressed in various cancers. FLV has been reported to decrease cancer development and metastasis. However, because of low bioavailability, extensive first-pass metabolism and short half-life of FLV (1.2 h), it is not appropriate for clinical application. Therefore, FLV-loaded emulsomes were formulated and optimized using Box-Behnken experimental design to achieve higher efficiency of formulation. Antitumor activity of optimized FLV-loaded emulsomes was evaluated in prostate cancer cells using cell cytotoxicity, apoptotic activity, cell cycle analysis, and enzyme-linked immunosorbent assay. The FLV-loaded emulsomes exhibited a monodispersed size distribution with a mean particle size less than 100 nm as measured by zetasizer. The entrapment efficiency was found to be 93.74% with controlled drug release profile. FLV-EMLs showed a significant inhibitory effect on the viability of PC3 cells when compared to the free FLV (P < 0.0025). Furthermore, FLV-EMLs showed significant arrest in G2/M and increase in percentage of apoptotic cells as compared to free FLV. FLV-EMLs were more effective than free FLV in reducing mitochondrial membrane potential and increase in caspase-3 activity. These results suggesting that FLV-EMLs caused cell cycle arrest which clarifies its significant antiproliferative effect compared to the free drug. Therefore, optimized FLV-EMLs may be an effective carrier for FLV in prostate cancer treatment.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Citotoxinas/farmacologia , Portadores de Fármacos/farmacologia , Fluvastatina/farmacologia , Neoplasias da Próstata , Antineoplásicos/síntese química , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citotoxinas/síntese química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/síntese química , Fluvastatina/síntese química , Humanos , Masculino , Células PC-3 , Tamanho da PartículaRESUMO
Flibanserin (FLB), an antiserotonin drug, is used to treat women with hypoactive sexual appetite disorder. FLB shows low bioavailability (~33%) probably due to its low water solubility. The current study investigated the impact of hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and sodium lauryl sulfate (SLS) on the dissolution and permeation of FLB. HP-ß-CD-FLB inclusion complexes were prepared using physical mixing and kneading at 1:1 and 1:2 M ratios and characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder X-ray diffractometry. The dissolution and permeation of the complexes through a cellophane membrane were performed in, 0.1, 0.3 and 0.5% SLS in phosphate buffer (pH 6.8). Derived from the slope of the linear phase solubility diagram, the apparent stability constant (K 1:1) was 372.54 M-1. Kneading changed the crystalline form of FLB to an amorphous appearance characterized by minimal crystalline peaks, indicating successful inclusion complex formation. In addition, the HP-ß-CD-FLB inclusion complexes showed twofold increased dissolution efficiency at 6 h. The cumulative FLB amount permeated at 6 h increased from 14.1% to 21.88% and 34.56% in the presence of 0.1% and 0.3% of SLS, respectively. However, increasing SLS to 0.5% did not show an increase in FLB permeation. Therefore, the HP-ß-CD-FLB inclusion complex has an improved dissolution rate compared to FLB alone. The presence of SLS in the dissolution medium increases the dissolution rate of pure FLB and its complex with HP-ß-CD. kneaded 1:1 complex was formulated bioadhesive buccal tablets and showed enhanced drug release.
RESUMO
AIM: Diabetic (type-2) is a metabolic disease characterized by increased blood glucose level from the normal level. In the present study, apigenin (AG) loaded lipid vesicles (bilosomes: BIL) was prepared, optimized and evaluated for the oral therapeutic efficacy. EXPERIMENTAL: AG-BIL was prepared by a thin-film evaporation method using cholesterol, span 60 and sodium deoxycholate. The prepared formulation was optimized by 3-factor and 3-level Box-Behnken design using particle size, entrapment efficiency and drug release as a response. The selected formulation further evaluated for ex-vivo permeation, in vivo pharmacokinetic and pharmacodynamics study. RESULTS: The optimized AG bilosomes (AG-BILopt) has shown the vesicle size 183.25 ± 2.43 nm, entrapment efficiency 81.67 ± 4.87%. TEM image showed a spherical shape vesicle with sharp boundaries. The drug release study revealed a significant enhancement in AG release (79.45 ± 4.18%) from AG-BILopt as compared to free AG-dispersion (25.47 ± 3.64%). The permeation and pharmacokinetic studies result revealed 4.49 times higher flux and 4.67 folds higher AUC0-t than free AG-dispersion. The antidiabetic activity results showed significant (P < 0.05) enhancement in therapeutic efficacy than free AG-dispersion. The results also showed marked improvement in biochemical parameters. CONCLUSION: Our findings suggested, the prepared apigenin loaded bilosomes was found to be an efficient delivery in the therapeutic efficacy in diabetes.
RESUMO
PDE5 targeting represents a new and promising strategy for apoptosis induction and inhibition of tumor cell growth due to its over-expression in diverse types of human carcinomas. Accordingly, we report the synthesis of series of pyrazolo[3,4-d]pyrimidin-4-one carrying quinoline moiety (11a-r) with potential dual PDE5 inhibition and apoptotic induction for cancer treatment. These hybrids were structurally elucidated and characterized with variant spectroscopic techniques as 1H NMR, 13C NMR and elemental analysis. The assessment of their anticancer activities has been declared. All the rationalized compounds 11a-r have been selected for their cytotoxic activity screening by NCI against 60 cell lines. Compounds 11a, 11b, 11j and 11k were the most active hybrids. Among all, compound 11j was further selected for five dose tesing and it displayed outstanding activity with strong antitumor activity against the nine tumor subpanels tested with selectivity ratios ranging from 0.019 to 8.3 at the GI50 level. Further, the most active targets 11a, b, j and k were screened for their PDE5 inhibitory activity, compound 11j (with IC50 1.57 nM) exhibited the most potent PDE5 inhibitory activity. Moreover, compound 11j is also showed moderate EGFR inhibition with IC50 of 5.827 ± 0.46 µM, but significantly inhibited the Wnt/ß-catenin pathway with IC501286.96 ± 12.37 ng/mL. In addition, compound 11j induced the intrinsic apoptotic mitochondrial pathway in HepG2 cells as evidenced by the lower expression levels of the anti-apoptotic Bcl-2 protein, and the higher expression of the pro-apoptotic protein Bax, p53, cytochrome c and the up-regulated active caspase-9 and caspase-3 levels. All results confirmed by western blotting assay. Compound 11j exhibit pre G1 apoptosis and cell cycle arrest at G2/M phase. In conclusion, hybridization of quinoline moiety with the privileged pyrazolo[3,4-d]pyrimidinon-4-one structure resulted in highly potent anticancer agent, 11j, which deserves more study, in particular, in vivo and clinical investiagtions, and it is expected that these results would be applied for more drug discovery process.
Assuntos
Antineoplásicos/síntese química , Inibidores da Fosfodiesterase 5/síntese química , Quinolinas/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases Efetoras/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromos c/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolinas/farmacologia , Proteína X Associada a bcl-2/metabolismoRESUMO
Twenty-five valproic acid conjugates have been designed and synthesized. All target compounds were explored for their in vitro anti-proliferative activities using the MTT-based assay against four human cancer cell lines includingliver (HePG2), colon (HCT116), breast (MCF7) and cervical (HeLa) carcinoma cell lines. Out of six valproic acid-amino acid conjugates 2a-f. Only cysteine containing conjugate 2f showed the significant activity (IC50 9.10 µM against HePG2 and 6.81 µM against HCT116). However conjugate 2j showed broad-spectrum antitumor activity against all cell lines tested. In addition, conjugates 4j and 4k which contains phenyl hydrazide and hydroxamic acid group, respectively, also showed broad spectrum activity. Furthermore, six compounds were screened for HDAC 1-9 isozymes inhibitory activities. Compounds 2j, 4j and 4k manifested a higher inhibitory activity more than valproic acid but less than SAHA. In addition, the in vivo antitumor screening of 2j, 4j and 4k was done and the results have shown that 2j, 4j and 4k, particularly 4j, showed a significant decrease in tumor size and presented a considerable decrease in viable EAC count. Docking study of selectedcompound 4j revealed that it can bind nicely to the binding pocket of HDAC 1, 2, 3, 4 and HDAC 8. The results suggest that compounds 2j, 4j and 4k, particularly 4j, may be promising lead candidates for the development of novel targeted anti-tumor drug potentially via inhibiting HDACs.
Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácido Valproico/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Ácido Valproico/síntese química , Ácido Valproico/químicaRESUMO
A series of novel 5-(substituted quinolin-3-yl or 1-naphthyl)methylene)-3-substituted imidazolidin-2,4-dione 9-26 was designed and synthesized. The prepared compounds were identified using 1H NMR, 13C NMR as well as elemental analyses. The inhibitory activity of 9-26 on HIV-1IIIB replication in MT-2 cells was evaluated. Some derivatives showed good to excellent anti-HIV activities as compounds 13, 18, 19, 20, 22 and 23. They showed EC50 of 0.148, 0.460, 0.332, 0.50, 0.271 and 0.420 µM respectively being more potent than compound I (EC50 = 0.70 µM) and II ( EC50 = 2.40 µM) as standards. The inhibitory activity of 9-26 on infected primary HIV-1 domain, 92US657 (clade B, R5) was investigated. All the tested compounds consistently inhibited infection of this virus with EC50 from 0.520 to 11.857 µM. Results from SAR studies showed that substitution on ring A with 6/7/8-methyl group resulted in significant increase in the inhibitory activity against HIV-1IIIB infection (5- >300 times) compared to the unsubstituted analog 9. The cytotoxicity of these compounds on MT-2 cells was tested and their CC50 values ranged from 11 to 85 µM with selectivity indexes ranged from 0.53 to 166. The docking study revealed nice fitting of the new compounds into the hydrophobic pocket of HIV-1 gp41 and higher affinity than NB-64. Compound 13, the most active in preventing HIV-1IIIB infection, adopted a similar orientation to compound IV. Molecular docking analysis of the new compounds revealed hydrogen bonding interactions between the imidazolidine-2,4-dione ring and LYS574 which were missed in the weakly active derivatives.
Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Imidazolidinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/química , HIV-1/enzimologia , Imidazolidinas/síntese química , Imidazolidinas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
This work aimed at improving the targeting and cytotoxicity of simvastatin (SMV) against colon cancer cells. SMV was encapsulated in chitosan polymers, followed by eudragit S100 microparticles. The release of SMV double coated microparticles was dependent on time and pH. At pH 7.4 maximum release was observed for 6 h. The efficiency of the double coat to target colonic tissues was confirmed using real-time X-ray radiography of iohexol dye. Entrapment efficiency and particle size were used in the characterization of the formula. Cytotoxicity of SMV microparticles against HCT-116 colon cancer cells was significantly improved as compared to raw SMV. Cell cycle analysis by flow cytomeric technique indicated enhanced accumulation of colon cancer cells in the G2/M phase. Additionally, a significantly higher cell fraction was observed in the pre-G phase, which highlighted enhancement of the proapoptotic activity of SMV prepared in the double coat formula. Assessment of annexin V staining was used for confirmation. Cell fraction in early, late and total cell death were significantly elevated. This was accompanied by a significant elevation of cellular caspase 3 activity. In conclusion, SMV-loaded chitosan coated with eudragit S100 formula exhibited improved colon targeting and enhanced cytotoxicity and proapoptotic activity against HCT-116 colon cancer cells.
Assuntos
Antineoplásicos/administração & dosagem , Quitosana/química , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Sinvastatina/administração & dosagem , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Portadores de Fármacos/química , Células HCT116 , Humanos , Concentração de Íons de Hidrogênio , Masculino , Microesferas , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Coelhos , Sinvastatina/farmacologiaRESUMO
In this study a number of heavy metals namely chromium (Cr), cadmium (Cd), zinc (Zn), barium (Ba), copper (Cu), manganese (Mn), cobalt (Co), rubidium (Rb), selenium (Se) are studied in the floor and air condition (AC) filter dust collected from urban and rural households of Saudi Arabia. To the best of our knowledge, many of these heavy metals are reported for the very first time in the indoor dust of Saudi Arabia. Studied metals were higher in urban dust than rural except Mn and Rb which were significantly higher (Pâ¯<â¯0.05) in rural dust. All metals, except Cd, Zn, and Ba in urban settings, were detected at higher (Pâ¯<â¯0.05) levels in AC filter dust than household floor dust from both rural and urban residential settings. Levels of the two dominant metals i.e., Zn and Mn were up to 1600 and 700⯵g/g, respectively in studied dust samples. Also associations between heavy metals and a number of different socio-economic parameters were studied which was significant for some trace metals. In literature exposure to many of trace metals are associated with various health problems, therefore health risk assessment for the Saudi population was calculated by incremental lifetime cancer risk (ILCR) and hazardous index (HI) via dust ingestion, inhalation, and dermal contact. The ILCR for all metals was within the tolerable range of reference values of USEPA (1â¯×â¯10- 11 to 1â¯×â¯10- 4). However, calculated HI for Mn, Cu, Ni, and Zn was more than 1 via dust exposure, which signifies the non-carcinogenic risk. The study highlights the occurrence of toxic metals in the indoor environments of Saudi Arabia and provides baseline data for future studies on these toxic metals in the region.
Assuntos
Poeira/análise , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental , Metais Pesados/análise , Adulto , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Cádmio , Cromo , Cobre , Intoxicação por Metais Pesados , Humanos , Manganês , Medição de Risco , Fatores Socioeconômicos , Oligoelementos , ZincoRESUMO
The present study was designed to prepare dapagliflozin (DFG) loaded ternary solid dispersions (SDs) using the carrier blend polyethylene glycol 6000 (PEG 6000) and poloxamer 188 (PLX 188). The prepared DFG-SDs were evaluated for solubility study, physicochemical characterization and molecular simulation study. The prepared DFG-SDs showed significant higher solubility and dissolution vis-a-vis pure DFG and DFG physical mixture. The composition DFG:PEG:PLX (1:2.25:0.75 mM) showed the highest solubility (0.476 ± 0.016 mg/mL). The physicochemical characterization confirms the polymorphic transition of DFG from crystalline state to stable amorphous form. The prepared DFG-SDs showed a significantly higher dissolution (64.78 ± 2.34% to 78.41 ± 2.39%) than pure DFG (15.70 ± 3.54%). DFG-SD2 showed a significantly enhanced drug permeation (p<.05) (58.76 ± 4.65 µg/cm) as compared to pure DFG (14.97 ± 3.32 µg/cm). The molecular docking study result revealed a good hydrophobic interaction of DFG with the used carrier due to the lowest energy pose. The interaction occurs between the methylene bridges and the central hydrophobic chain of polyoxypropylene of the polymer. Therefore, DFG-SDs prepared by microwave irradiation method using hydrophilic carrier blend might be a promising strategy for improving the solubility and in vitro dissolution performance.
Assuntos
Compostos Benzidrílicos/química , Glucosídeos/química , Poloxâmero , Polietilenoglicóis , Portadores de Fármacos , Simulação de Acoplamento Molecular , Polietilenoglicóis/química , SolubilidadeRESUMO
Accumulating evidence indicates that statins reduce the risk of different cancers and inhibit the proliferation of liver cancer cells. This study aims to explore whether the electrostatic conjugation of optimized fluvastatin (FLV) to human immunodeficiency virus type 1 (HIV-1) trans-activator transcription peptide (TAT) would enhance the anti-proliferative activity against HepG2 cells. FLV-TAT conjugation was optimized to achieve the lowest size with highest zeta potential. Nine formulae were constructed, using a factorial design with three factors-FLV concentration, TAT concentration, and pH of the medium-while the responses were zeta potential and size. The optimized formula showed a particle size of 199.24 nm and 29.14 mV zeta potential. Data indicates that conjugation of FLV to TAT (optimized formula) significantly enhances anti-proliferative activity and uptake by HepG2 cells when compared to raw FLV. Flow cytometry showed significant accumulation of cells in the pre-G phase, which highlights higher apoptotic activity. Annexin V staining indicated a significant increase in total cell death in early and late apoptosis. This was confirmed by significantly elevated caspase 3 in cells exposed to FLV-TAT preparation. In conclusion, the FLV-TAT optimized formula exhibited improved anti-proliferative action against HepG2. This is partially attributed to the enhanced apoptotic effects and cellular uptake of FLV.
Assuntos
Fluvastatina/química , Fluvastatina/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Citometria de Fluxo , Células Hep G2 , Humanos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
A straightforward, mild and cost-efficient synthesis of various arylamides in water was accomplished using versatile benzotriazole chemistry. Acylation of various amines was achieved in water at room temperature as well as under microwave irradiation. The developed protocol unfolds the synthesis of amino acid aryl amides, drug conjugates and benzimidazoles. The environmentally friendly synthesis, short reaction time, simple workup, high yields, mild conditions and free of racemization are the key advantages of this protocol.
Assuntos
Química Verde/métodos , Micro-Ondas , Triazóis/química , Acilação , Benzimidazóis/química , Estrutura MolecularRESUMO
Two sets of diphenyl ether derivatives incorporating five-membered 1,3,4-oxadiazoles, and their open-chain aryl hydrazone analogs were synthesized in good yields. Most of the synthesized compounds showed promising in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Three diphenyl ether derivatives, namely hydrazide 3, oxadiazole 4 and naphthylarylidene 8g exhibited pronounced activity with minimum inhibitory concentrations (MICs) of 0.61, 0.86 and 0.99 µg/mL, respectively compared to triclosan (10 µg/mL) and isoniazid (INH) (0.2 µg/mL). Compounds 3, 4, and 8g showed the InhA reductase enzyme inhibition with higher IC50 values (3.28-4.23 µM) in comparison to triclosan (1.10 µM). Correlation between calculated physicochemical parameters and biological activity has been discussed which justifies a strong correlation with respect to the inhibition of InhA reductase enzyme. Molecular modeling and drug-likeness studies showed good agreement with the obtained biological evaluation. The structural and experimental information concerning these three InhA inhibitors will likely contribute to the lead optimization of new antibiotics for M. tuberculosis.