Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Immunol ; 24(10): 1748-1761, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37563308

RESUMO

In atherosclerosis, some regulatory T (Treg) cells become exTreg cells. We crossed inducible Treg and exTreg cell lineage-tracker mice (FoxP3eGFP-Cre-ERT2ROSA26CAG-fl-stop-fl-tdTomato) to atherosclerosis-prone Apoe-/- mice, sorted Treg cells and exTreg cells and determined their transcriptomes by bulk RNA sequencing (RNA-seq). Genes that were differentially expressed between mouse Treg cells and exTreg cells and filtered for their presence in a human single-cell RNA-sequencing (scRNA-seq) panel identified exTreg cell signature genes as CST7, NKG7, GZMA, PRF1, TBX21 and CCL4. Projecting these genes onto the human scRNA-seq with CITE-seq data identified human exTreg cells as CD3+CD4+CD16+CD56+, which was validated by flow cytometry. Bulk RNA-seq of sorted human exTreg cells identified them as inflammatory and cytotoxic CD4+T cells that were significantly distinct from both natural killer and Treg cells. DNA sequencing for T cell receptor-ß showed clonal expansion of Treg cell CDR3 sequences in exTreg cells. Cytotoxicity was functionally demonstrated in cell killing and CD107a degranulation assays, which identifies human exTreg cells as cytotoxic CD4+T cells.


Assuntos
Aterosclerose , Linfócitos T Reguladores , Humanos , Animais , Camundongos
2.
Bioinformatics ; 36(4): 1121-1128, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31584626

RESUMO

MOTIVATION: Leucine-aspartic acid (LD) motifs are short linear interaction motifs (SLiMs) that link paxillin family proteins to factors controlling cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. RESULTS: To enable a proteome-wide assessment of LD motifs, we developed an active learning based framework (LD motif finder; LDMF) that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome revealed a dozen new proteins containing LD motifs. We found that LD motif signalling evolved in unicellular eukaryotes more than 800 Myr ago, with paxillin and vinculin as core constituents, and nuclear export signal as a likely source of de novo LD motifs. We show that LD motif proteins form a functionally homogenous group, all being involved in cell morphogenesis and adhesion. This functional focus is recapitulated in cells by GFP-fused LD motifs, suggesting that it is intrinsic to the LD motif sequence, possibly through their effect on binding partners. Our approach elucidated the origin and dynamic adaptations of an ancestral SLiM, and can serve as a guide for the identification of other SLiMs for which only few representatives are known. AVAILABILITY AND IMPLEMENTATION: LDMF is freely available online at www.cbrc.kaust.edu.sa/ldmf; Source code is available at https://github.com/tanviralambd/LD/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteoma , Motivos de Aminoácidos , Ácido Aspártico , Humanos , Leucina , Prevalência
3.
Biochemistry ; 59(39): 3757-3771, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32901486

RESUMO

Recruitment of circulating cells toward target sites is primarily dependent on selectin/ligand adhesive interactions. Glycosyltransferases are involved in the creation of selectin ligands on proteins and lipids. α1,3-Fucosylation is imperative for the creation of selectin ligands, and a number of fucosyltransferases (FTs) can modify terminal lactosamines on cells to create these ligands. One FT, fucosyltransferase VI (FTVI), adds a fucose in an α1,3 configuration to N-acetylglucosamine to generate sialyl Lewis X (sLex) epitopes on proteins of live cells and enhances their ability to bind E-selectin. Although a number of recombinant human FTVIs have been purified, apart from limited commercial enzymes, they were not characterized for their activity on live cells. Here we focused on establishing a robust method for producing FTVI that is active on living cells (hematopoietic cells and mesenchymal stromal cells). To this end, we used two expression systems, Bombyx mori (silkworm) and Pichia pastoris (yeast), to produce significant amounts of N-terminally tagged FTVI and demonstrated that these enzymes have superior activity when compared to currently available commercial enzymes that are produced from various expression systems. Overall, we outline a scheme for obtaining large amounts of highly active FTVI that can be used for the application of FTVI in enhancing the engraftment of cells lacking the sLex epitopes.


Assuntos
Selectina E/metabolismo , Fucosiltransferases/metabolismo , Polissacarídeos/metabolismo , Células-Tronco/metabolismo , Animais , Bombyx/genética , Linhagem Celular , Linhagem Celular Tumoral , Fucosiltransferases/genética , Expressão Gênica , Humanos , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Anal Chem ; 92(9): 6200-6206, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32264668

RESUMO

The parallel plate flow chamber assay is widely utilized to study physiological cell-cell adhesive interactions under dynamic flow that mimics the bloodstream. In this technique, the cells are perfused under defined shear stresses over a monolayer of endothelial cells (expressing homing molecules, e.g., selectins) or a surface (expressing recombinant homing molecules). However, with the need to study multiple samples and multiple parameters per sample, using a traditional bright-field microscope-based flow assay allows only one sample at a time to be analyzed, resulting in high interexperiment variability, the need for normalization, waste of materials, and significant consumption of time. We developed a multiplexing approach using a three-color fluorescence staining method, which allowed for up to seven different combination signatures to be run at one time. Using this fluorescent multiplex cell rolling (FMCR) assay, each sample is labeled with a different signature of emission wavelengths and mixed with other samples just minutes before the flow run. Subsequently, real-time images are acquired in a single pass using a line-scanning spectral confocal microscope. To illustrate the glycan-dependent binding of E-selectin, a central molecule in cell migration, to its glycosylated ligands expressed on myeloid-leukemic cells in flow, the FMCR assay was used to analyze E-selectin-ligand interactions following the addition (fucosyltransferase-treatment) or removal (deglycosylation) of key glycans on the flowing cells. The FMCR assay allowed us to analyze the cell-adhesion events from these different treatment conditions simultaneously in a competitive manner and to calculate differences in rolling frequency, velocity, and tethering capability of cells under study.


Assuntos
Corantes Fluorescentes/química , Microscopia Confocal/métodos , Animais , Anticorpos/química , Anticorpos/imunologia , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Selectina E/imunologia , Selectina E/metabolismo , Humanos , Imunoensaio , Células-Tronco/citologia , Células-Tronco/metabolismo , Imagem com Lapso de Tempo
5.
Glycobiology ; 25(12): 1392-409, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26153105

RESUMO

Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.


Assuntos
Movimento Celular , Encefalomielite Autoimune Experimental/terapia , Células-Tronco Neurais/metabolismo , Polissacarídeos/metabolismo , Animais , Terapia Genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/transplante , Selectinas/metabolismo
6.
Science ; 375(6577): 214-221, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025664

RESUMO

Atherosclerosis is an inflammatory disease of the artery walls and involves immune cells such as macrophages. Olfactory receptors (OLFRs) are G protein­coupled chemoreceptors that have a central role in detecting odorants and the sense of smell. We found that mouse vascular macrophages express the olfactory receptor Olfr2 and all associated trafficking and signaling molecules. Olfr2 detects the compound octanal, which activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome and induces interleukin-1ß secretion in human and mouse macrophages. We found that human and mouse blood plasma contains octanal, a product of lipid peroxidation, at concentrations sufficient to activate Olfr2 and the human ortholog olfactory receptor 6A2 (OR6A2). Boosting octanal levels exacerbated atherosclerosis, whereas genetic targeting of Olfr2 in mice significantly reduced atherosclerotic plaques. Our findings suggest that inhibiting OR6A2 may provide a promising strategy to prevent and treat atherosclerosis.


Assuntos
Aldeídos/metabolismo , Aterosclerose/metabolismo , Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Receptores Odorantes/metabolismo , Adulto , Aldeídos/análise , Aldeídos/sangue , Aldeídos/farmacologia , Animais , Aorta , Aterosclerose/tratamento farmacológico , Humanos , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Receptores Odorantes/antagonistas & inibidores , Receptores Odorantes/genética , Transdução de Sinais
7.
Cells ; 9(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322482

RESUMO

Regulatory T cells (Tregs) express the lineage-defining transcription factor FoxP3 and play crucial roles in self-tolerance and immune homeostasis. Thymic tTregs are selected based on affinity for self-antigens and are stable under most conditions. Peripheral pTregs differentiate from conventional CD4 T cells under the influence of TGF-ß and other cytokines and are less stable. Treg plasticity refers to their ability to inducibly express molecules characteristic of helper CD4 T cell lineages like T-helper (Th)1, Th2, Th17 or follicular helper T cells. Plastic Tregs retain FoxP3 and are thought to be specialized regulators for "their" lineage. Unstable Tregs lose FoxP3 and switch to become exTregs, which acquire pro-inflammatory T-helper cell programs. Atherosclerosis with systemic hyperlipidemia, hypercholesterolemia, inflammatory cytokines, and local hypoxia provides an environment that is likely conducive to Tregs switching to exTregs.


Assuntos
Aterosclerose/patologia , Linfócitos T Reguladores/metabolismo , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem da Célula , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Receptores de Superfície Celular , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
8.
Vaccine ; 38(28): 4495-4506, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-31964554

RESUMO

Atherosclerosis, the major underlying cause of cardiovascular diseases (CVD), is the number one killer globally. The disease pathogenesis involves a complex interplay between metabolic and immune components. Although lipid-lowering drugs such as statins curb the risks associated with CVD, significant residual inflammatory risk remains. Substantial evidence from experimental models and clinical studies has established the role of inflammation and immune effector mechanisms in the pathogenesis of atherosclerosis. Several stages of the disease are affected by host-mediated antigen-specific adaptive immune responses that play either protective or proatherogenic roles. Therefore, strategies to boost an anti-atherogenic humoral and T regulatory cell response are emerging as preventative or therapeutic strategies to lowering inflammatory residual risks. Vaccination holds promise as an efficient, durable and relatively inexpensive approach to induce protective adaptive immunity in atherosclerotic patients. In this review, we discuss the status and opportunities for a human atherosclerosis vaccine. We describe (1) some of the immunomodulatory therapeutic interventions tested in atherosclerosis (2) the immune targets identified in pre-clinical and clinical investigations (3) immunization strategies evaluated in animal models (4) past and ongoing clinical trials to examine the safety and efficacy of human atherosclerosis vaccines and (5) strategies to improve and optimize vaccination in humans (antigen selection, formulation, dose and delivery).


Assuntos
Aterosclerose , Vacinas , Imunidade Adaptativa , Animais , Aterosclerose/prevenção & controle , Humanos , Inflamação , Camundongos , Vacinação
9.
Front Immunol ; 8: 492, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515724

RESUMO

Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA