RESUMO
Doxorubicin (DOX) is one of the basic anticancer drugs, nonetheless its use is restricted due to noxious side effects. Kidney failure is one of the main side effects that restrict its medical use. The current study assessed the nephroprotective effects of fenofibrate and pioglitazone against the renal injury induced by doxorubicin in rats and illustrated the probable mechanisms underlying these protective effects. For this purpose, Male Sprague-Dawley rats weighing (200-230 g) were allocated into seven groups treated for 15 days as following: control (50% corn oil + 50% DMSO p.o), fenofibrate (100 mg/kg p.o) and pioglitazone (10 mg/kg p.o) as well as four groups of DOX (15 mg/kg i.p on 11th day). DOX groups included DOX alone and DOX with protective drugs fenofibrate, pioglitazone or both of them. As a result of doxorubicin nephrotoxicity; serum creatinine and blood urea nitrogen were remarkably elevated. Moreover, renal glutathione was significantly reduced while tissue lipid peroxidation malondialdehyde, tumor necrosis factor-α, nuclear factor-kappa B p65 (NF-κB p65), interleukin-1ß, p38 mitogen activated protein kinase (p38-MAPK) and caspase-3 (Casp-3) were significantly augmented. Treatment with fenofibrate and pioglitazone either alone or in combination markedly attenuated DOX-induced injury by suppression of oxidative stress, inflammation and apoptosis. The above-mentioned biochemical markers were affirmed by histological assessment. In conclusion, fenofibrate, pioglitazone, and their combination possess potential prophylactic effects against doxorubicin-induced renal injury through modulation of p38-MAPK/NF-κB p65 pathway with superiority to the combination.
Assuntos
Fenofibrato , Insuficiência Renal , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Pioglitazona/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Fenofibrato/farmacologia , Fenofibrato/metabolismo , Rim , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Hipoglicemiantes/farmacologia , ApoptoseRESUMO
Proton pump inhibitors (PPIs) are one of the most commonly prescribed medications. However, PPI usage is linked to a higher risk of both acute and chronic renal damage by mechanisms not entirely known. The present study demonstrates that omeprazole (10 mg/kg body weight, i.p.) causes TGF-ß/Smad signaling activation and subsequent expression of the profibrotic genes CTGF and TIMP-1 in rat kidney. Increased production of CTGF and TIMP-1 accompany activation of the TGF-ß/Smad signaling cascade. However, simultaneous treatment of omeprazole and the TGF-ß inhibitor, disitertide (P144) (1 mg/kg body weight i.p.) suppresses the TGF-ß/Smad signaling pathway and subsequent production of CTGF and TIMP-1. Additionally, TGF-ß level in rat kidney was highly reduced in animals treated with the ROS (reactive oxygen species) scavenger, N-acetyl cysteine (NAC) (100 mg/kg body weight i.p.) before omeprazole administration. Furthermore, the reduction in SOD activity brought by omeprazole was returned to the normal level in those animals. However, MDA level increased by omeprazole was highly reduced in the presence of NAC. Collectively, the current findings demonstrate that omeprazole has the ability to promote the expression of the profibrotic genes CTGF and TIMP-1 in a ROS and TGF-ß dependent manner. The present study suggests the co-use of ROS scavenger to improve the therapeutic use of the PPI omeprazole.
RESUMO
INTRODUCTION: Parkinsonism is a neurodegenerative disorder. Pomegranate (POM) has been previously shown to have a dopaminergic neuroprotective effect against parkinsonism. OBJECTIVE: The aim of the current study is to investigate the possible effect of POM in combination with each of vinpocetine, propolis, or cocoa in the treatment of parkinsonism disease even without being given as adjuvant to L-dopa . METHODS: Rats were divided into seven groups, one normal and six RT model groups. One of the RT groups (2.5 mg/kg/48 h/10 doses sc), for 20 days served as non-treated parkinsonism model, whereas the others were treated with either L-dopa (10 mg/kg, p.o./day) or with POM (150 mg/kg, p.o./day) together with each of the following; vinpocetine (VIN) (20 mg/kg, p.o./day), propolis (300 mg/kg, p.o./day), cocoa (24 mg/kg, p.o./day). Motor and cognitive performances were examined using four tests (catalepsy, swimming, Y-maze, open field). Striatal dopamine, norepinephrine, serotonin, GABA, glutamate, acetylcholinesterase, GSK-3ß, BDNF levels were assessed as well as MDA, SOD, TAC, IL-1ß, TNF-α, iNOs, and caspase-3. Also, histopathological examinations of different brain regions were determined. RESULTS: Treatment with L-dopa alone or with all POM combination groups alleviated the deficits in locomotor activities, cognition, neurotransmitter levels, acetylcholinesterase activity, oxidative stress, and inflammatory markers as well as caspase-3 expression induced by RT. CONCLUSION: Combinations of POM with each of VIN, propolis, or cocoa have a promising disease-modifying antiparkinsonian therapy even without being given as an adjuvant to L-dopa.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Punica granatum , Própole , Acetilcolinesterase/efeitos adversos , Envelhecimento , Animais , Caspase 3/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/efeitos adversos , Própole/efeitos adversos , Ratos , Alcaloides de VincaRESUMO
The present work was designed to investigate whether fenofibrate could ameliorate olanzapine deleterious effect on insulin resistance via its effect on fibroblast growth factor-21 (FGF-21)-adiponectin axis without affecting olanzapine antipsychotic effect in postweaning socially isolated reared female rats. Treatment with olanzapine (6 mg/kg, intraperitoneally) or fenofibrate (100 mg/kg, orally) have been started 5 weeks after isolation, then behavioral tests, hippocampal content of neurotransmitters, and brain-derived neurotrophic factor (BDNF) were assessed. Moreover, insulin resistance, lipid profile, FGF-21, adiponectin, inflammatory, and oxidative stress markers of adipose tissue were assessed. Treatment of isolated-reared animals with olanzapine, or fenofibrate significantly ameliorated the behavioral and biochemical changes induced by postweaning social isolation. Co-treatment showed additive effects in improving hippocampal BDNF level. Besides, fenofibrate reduced the elevation in weight gain, adiposity index, insulin resistance, lipid profile, and FGF-21 level induced by olanzapine treatment. Also, fenofibrate increased adiponectin level which was reduced upon olanzapine treatment. Moreover, fenofibrate improved both adipose tissue oxidative stress and inflammatory markers elevation as a result of olanzapine treatment. Fenofibrate could ameliorate olanzapine-induced insulin resistance without affecting its central effect in isolated reared rats via its action on FGF-21-adiponectin axis.
Assuntos
Antipsicóticos/toxicidade , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Olanzapina/toxicidade , Adiponectina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Antipsicóticos/farmacologia , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Resistência à Insulina , Olanzapina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Aumento de Peso/efeitos dos fármacosRESUMO
Baricitinib, is a selective and reversible Janus kinase inhibitor, is commonly used to treat adult patients with moderately to severely active rheumatoid arthritis (RA). A fast, reproducible and sensitive method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantification of baricitinib in rat plasma has been developed. Irbersartan was used as the internal standard (IS). Baracitinib and IS were extracted from plasma by liquid-liquid extraction using a mixture of n-hexane and dichloromethane (1:1) as extracting agent. Chromatographic separation was performed using Acquity UPLC HILIC BEH 1.7 µm 2.1 × 50 mm column with the mobile phase consisting of 0.1% formic acid in acetonitrile and 20 mM ammonium acetate (pH 3) (97:3). The electrospray ionization in the positive-mode was used for sample ionization in the multiple reaction monitoring mode. Baricitinib and the IS were quantified using precursor-to-production transitions of m/z 372.15 > 251.24 and 429.69 > 207.35 for baricitinib and IS, respectively. The method was validated according to the recent FDA and EMA guidelines for bioanalytical method validation. The lower limit of quantification was 0.2 ng/mL, whereas the intra-day and inter-day accuracies of quality control (QCs) samples were ranged between 85.31% to 89.97% and 87.50% to 88.33%, respectively. Linearity, recovery, precision, and stability parameters were found to be within the acceptable range. The method was applied successfully applied in pilot pharmacokinetic studies.
Assuntos
Azetidinas/farmacocinética , Cromatografia Líquida de Alta Pressão , Inibidores de Janus Quinases/farmacocinética , Purinas/farmacocinética , Pirazóis/farmacocinética , Sulfonamidas/farmacocinética , Espectrometria de Massas em Tandem , Animais , Azetidinas/química , Monitoramento de Medicamentos , Humanos , Inibidores de Janus Quinases/química , Purinas/química , Pirazóis/química , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sulfonamidas/químicaRESUMO
Foretinib, an oral multikinase inhibitor, is known to have anti-tumor effects against cancers. The doses and the levels of foretinib vary based on the type of cancer to be treated. An accurate and precise method is required to determine the level of foretinib and its pharmacokinetics. Here, we developed such a method, which was validated based on the guidelines of the FDA and EMA. Foretinib and ibrutinib (the internal standard (IS)) were extracted using tert-butyl methyl ether. Foretinib and IS were eluted in approximately 1.2â¯min. Thus, a linear, fast, accurate, and precise method was developed. The calibration curve was linear (r2â¯Ëâ¯0.997) in the range of 0.5-400.0â¯ng/mL and the lowest limit of quantitation was 0.5â¯ng/mL. The average recovery, accuracy, and precision were 87.9%, 88.7%, andâ¯≤7.8%, respectively. The analyte was deemed stable using various stability tests. The validated assay was then fruitfully applied to a pharmacokinetics study in rats, which revealed that foretinib was absorbed and the maximum concentration achieved at 4.0â¯h after the administration of a single dose of foretinib.
RESUMO
Hepatic injury is one of the most common complications associated with cisplatin (CIS) use. Recently, liver protection lines are being discovered to stop the hepatic cell death due to inflammatory and apoptotic perturbations. l-arginine has protective effects in several models of liver injury. This study was designed to investigate the possible protective effect of l-arginine against CIS-induced acute hepatic injury in rats. Rats were divided into 4 groups: control, l-arginine, CIS, l-arginine + CIS. Liver function, oxidative stress, inflammatory cytokines, and apoptosis markers were assessed. l-arginine pretreatment protected the liver against CIS-induced toxicity as indicated by significantly alleviating the changes in liver function along with restoration of the antioxidant status. This finding was confirmed with the markedly improved pathological changes. l-arginine showed anti-inflammatory effect through the reduction of liver expression of iNOS, TNF-α, and NF-κß, which were ameliorated to significant levels. Furthermore, l-arginine administration downregulated the liver expression of the apoptotic marker, caspase-3. The results recommend l-arginine as a hepatoprotective agent against CIS toxicity. Mostly, this hepatoprotective effect of l-arginine involved anti-inflammatory and anti-apoptotic activities.
Assuntos
Apoptose/efeitos dos fármacos , Arginina/farmacologia , Cisplatino/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Biomarcadores/metabolismo , Caspase 3/metabolismo , Citoproteção/efeitos dos fármacos , Inflamação/metabolismo , Fígado/patologia , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Alzheimer's disease (AD) is a complex form of neurodegenerative dementia. Growing body of evidence supports the cardinal role of sirtuin1 (SIRT1) in neurodegeneration and AD development. Recently, adipose tissue-derived mesenchymal stem cells (Ad-MSCs) have made their mark for a wide array of regenerative medicine applications, including neurodegenerative disorders. Therefore, the present study aimed to investigate the therapeutic potential of Ad-MSCs in AD rat model, and to explore the possible implication of SIRT1. Ad-MSCs were isolated from rat epididymal fat pads and properly characterized. Aluminum chloride was used to induce AD in rats, and afterward, a group of AD-induced rats received a single dose of Ad-MSCs (2 × 106 cell, I.V per rat). One month after Ad-MSCs transplantation, behavioral tests were done, brain tissues were collected, then histopathological and biochemical assessments were performed. Amyloid beta and SIRT1 levels were determined by enzyme-linked immunosorbent assay. Whereas expression levels of neprilysin, BCL2 associated X protein, B-cell lymphoma-2, interleukin-1ß, interleukin-6, and nerve growth factor in hippocampus and frontal cortex brain tissues were assessed using reverse transcriptase quantitative polymerase chain reaction. Our data demonstrated that transplantation of Ad-MSCs alleviated cognitive impairment in AD rats. Additionally, they exhibited anti-amyloidogenic, antiapoptotic, anti-inflammatory, as well as neurogenic effects. Furthermore, Ad-MSCs were found to possibly mediate their therapeutic effects, at least partially, via modulating both central and systemic SIRT1 levels. Hence, the current study portrays Ad-MSCs as an effective therapeutic approach for AD management and opens the door for future investigations to further elucidate the role of SIRT1 and its interrelated molecular mediators in AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Ratos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismoRESUMO
Autism is complex and multifactorial, and is one of the fastest growing neurodevelopmental disorders. Canagliflozin (Cana) is an antidiabetic drug that exhibits neuroprotective properties in various neurodegenerative syndromes. This study investigated the possible protective effect of Cana against the valproic acid (VPA)-induced model of autism. VPA was injected subcutaneously (SC) into rat pups at a dose of 300 mg/kg, twice daily on postnatal day-2 (PD-2) and PD-3, and once on PD-4 to induce an autism-like syndrome. Graded doses of Cana were administered (5 mg/kg, 7.5 mg/kg, and 10 mg/kg, P.O.) starting from the first day of VPA injections and continued for 21 days. At the end of the experiment, behavioral tests and histopathological alterations were assessed. In addition, the gene expression of peroxisome proliferator-activated receptor γ (PPAR γ), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase (PDK), cellular myeloctomatosis (c-Myc) with protein expression of glucose transporter-1 (GLUT-1), phosphatase and tensin homolog (PTEN), and level of acetylcholine (ACh) were determined. Treatment with Cana significantly counteracted histopathological changes in the cerebellum tissues of the brain induced by VPA. Cana (5 mg/kg, 7.5 mg/kg, and 10 mg/kg) improved sociability and social preference, enhanced stereotypic behaviors, and decreased hyperlocomotion activity, in addition to its significant effect on the canonical Wnt/ß-catenin pathway via the downregulation of gene expression of LDHA (22%, 64%, and 73% in cerebellum tissues with 51%, 60%, and 75% in cerebrum tissues), PDK (27%, 50%, and 67% in cerebellum tissues with 34%, 66%, and 77% in cerebrum tissues), c-Myc (35%, 44%, and 72% in cerebellum tissues with 19%, 58%, and 79% in cerebrum tissues), protein expression of GLUT-1 (32%, 48%, and 49% in cerebellum tissues with 30%, 50%, and 54% in cerebrum tissues), and elevating gene expression of PPAR-γ (2, 3, and 4 folds in cerebellum tissues with 1.5, 3, and 9 folds in cerebrum tissues), protein expression of PTEN (2, 5, and 6 folds in cerebellum tissues with 6, 6, and 10 folds in cerebrum tissues), and increasing the ACh levels (4, 5, and 7 folds) in brain tissues. The current study confirmed the ameliorating effect of Cana against neurochemical and behavioral alterations in the VPA-induced model of autism in rats.
RESUMO
Alzheimer's disease (AD) is a devastating illness with limited therapeutic interventions. The aim of this study is to investigate the pathophysiological mechanisms underlying AD and explore the potential neuroprotective effects of cocoa, either alone or in combination with other nutraceuticals, in an animal model of aluminum-induced AD. Rats were divided into nine groups: control, aluminum chloride (AlCl3) alone, AlCl3 with cocoa alone, AlCl3 with vinpocetine (VIN), AlCl3 with epigallocatechin-3-gallate (EGCG), AlCl3 with coenzyme Q10 (CoQ10), AlCl3 with wheatgrass (WG), AlCl3 with vitamin (Vit) B complex, and AlCl3 with a combination of Vit C, Vit E, and selenium (Se). The animals were treated for five weeks, and we assessed behavioral, histopathological, and biochemical changes, focusing on oxidative stress, inflammation, Wnt/GSK-3ß/ß-catenin signaling, ER stress, autophagy, and apoptosis. AlCl3 administration induced oxidative stress, as evidenced by elevated levels of malondialdehyde (MDA) and downregulation of cellular antioxidants (Nrf2, HO-1, SOD, and TAC). AlCl3 also upregulated inflammatory biomarkers (TNF-α and IL-1ß) and GSK-3ß, leading to increased tau phosphorylation, decreased brain-derived neurotrophic factor (BDNF) expression, and downregulation of the Wnt/ß-catenin pathway. Furthermore, AlCl3 intensified C/EBP, p-PERK, GRP-78, and CHOP, indicating sustained ER stress, and decreased Beclin-1 and anti-apoptotic B-cell lymphoma 2 (Bcl-2) expressions. These alterations contributed to the observed behavioral and histological changes in the AlCl3-induced AD model. Administration of cocoa, either alone or in combination with other nutraceuticals, particularly VIN or EGCG, demonstrated remarkable amelioration of all assessed parameters. The combination of cocoa with nutraceuticals attenuated the AD-mediated deterioration by modulating interrelated pathophysiological pathways, including inflammation, antioxidant responses, GSK-3ß-Wnt/ß-catenin signaling, ER stress, and apoptosis. These findings provide insights into the intricate pathogenesis of AD and highlight the neuroprotective effects of nutraceuticals through multiple signaling pathways.
RESUMO
Alzheimer's disease (AD) is one of such diseases that represent the most prominent cause of dementia in elderly people. To explore the possible neuroprotective effect as well as mechanism of action of Vinpocetine either alone or in combination with EGCG, CoQ10, or VE & Se in ameliorating aluminum chloride-induced AD in rats. Rats were received AlCl3 (70 mg/kg) intraperitoneal daily dose for 30 days along with EGCG (10 mg/kg, I.P), CoQ10 (200 mg/kg, P.O), VE (100 mg/kg, P.O) & Se (1 mg/kg, P.O) as well as Vinpocetine (20 mg/kg, P.O) either alone or in combination. Results revealed that the combination of Vinpocetine with EGCG showed the best neuroprotection. This protection in the brain was indicated by the significant decrease in Aß and ACHE. The same pattern of results were shown in the levels of monoamines and BDNF. In addition, the combination of Vinpocetine with EGCG showed more pronounced anti-inflammatory (TNF-α, IL-1ß) and antioxidant (MDA, SOD, TAC) effects in comparison to other combinations. These results were confirmed using histopathological examinations as well as DNA fragmentation assays. Vinpocetine with EGCG showed pronounced protection on neurons against AD induced by AlCl3 in rats.
Assuntos
Doença de Alzheimer , Selênio , Idoso , Alumínio , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Animais , Catequina/análogos & derivados , Humanos , Neuroproteção , Ratos , Ratos Wistar , Ubiquinona/análogos & derivados , Alcaloides de Vinca , Vitamina ERESUMO
The current study investigated the neuroprotective activity of some drugs and nutriceuticals with antioxidant and anti-inflammatory potential on the pathogenesis of Parkinson's disease (PD). Rats were categorized into seven groups: Rats received tween80 daily for 5 weeks as a control group, MnCl2 (10 mg/kg, i.p) either alone (group II) or in combination with vinpocetine (VIN) (20 mg/kg) (group III), punicalagin (PUN) (30 mg/kg) (group IV), niacin (85 mg/kg) (group V), vitamin E (Vit E) (100 mg/kg) (group VI) or their combination (group VII). Motor activities was examined using open-field and catalepsy. Striatal monamines, acetylcholinesterase, excitatory/inhibitory neurotransmitters, redox status, pro-oxidant content, brain inflammatory, apoptotic and antioxidant biomarkers levels were assessed. Besides, histopathological investigations of different brain regions were determined. Groups (IV -GVII) showed improved motor functions of PD rats. Applied drugs significantly increased the brain levels of monoamines with the strongest effect to PUN. Meanwhile, they significantly decreased levels of acetylcholinesterase with a strongest effect to PUN. Moreover, they exhibited significant neuronal protection and anti-inflammatory abilities through significant reduction of the brain levels of COX2, TNF-α and Il-1ß with a strongest effect to the PUN. Interestingly; groups (IV - GVII) showed restored glutamate/GABA balance and exhibited a pronounced decrease in caspase-3 content and GSK-3ß protein expression levels. In addition, they significantly increased Bcl2 mRNA expression levels with a strongest effect for PUN. All these findings were further confirmed by the histopathological examinations. As a conclusion, we propose VIN and PUN to mitigate the progression of PD via their antioxidant, anti-inï¬ammatory, anti-apoptotic, neurotrophic and neurogenic activities.
Assuntos
Fármacos Neuroprotetores , Niacina , Doença de Parkinson , Acetilcolinesterase , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Taninos Hidrolisáveis , Manganês/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Niacina/farmacologia , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Alcaloides de Vinca , Vitamina E/farmacologiaRESUMO
BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease that is exacerbated by social isolation (SI) and protein malnutrition (PM). Antioxidants, physical and mental activities (Ph&M) can maintain cognitive functions and protect against dementia. OBJECTIVE: To investigate the impact of Epigallocatechin-3-gallate (EGCG), Vitamin E (VE), Vitamin C (VC), and Selenium (Se), in enhancing the potential effect of Ph&M versus SI&PM as risk factors in the progression of AD in rats. METHODS: Aluminum chloride (70 mg/kg, I.P for 5 weeks) was used to induce AD in rats that either normally fed or socially isolated and protein malnourished (SI&PM). Simultaneously, rats were weekly exposed to Ph&M either alone or in combination with EGCG (10 mg/kg, I.P), VC (400 mg/kg, P.O), VE (100 mg/kg, P.O), and Se (1 mg/kg, P.O). RESULTS: The combination protocol of EGCG, VE, VC, and Se together with Ph&M significantly increased brain monoamines, superoxide dismutase (SOD), total antioxidant capacity (TAC) and brain-derived neurotrophic factor (BDNF) in AD, SI&PM and SI&PM/AD groups. Additionally, this regimen significantly mitigated brain acetylcholine esterase (ACHE), ß-amyloid (Aß), Tau protein, ß-secretase, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and Interleukin 1ß (IL-1ß) as well as DNA fragmentation. These biochemical findings were supported by the histopathological examinations of brain tissue. CONCLUSION: The combination protocol of antioxidants with Ph&M activities mitigated SI&PM-induced progressive risk of AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Ácido Ascórbico/farmacologia , Catequina/análogos & derivados , Saúde Mental/normas , Condicionamento Físico Animal , Selênio/farmacologia , Vitamina E/farmacologia , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Antioxidantes/farmacologia , Catequina/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de RiscoRESUMO
Pimavanserin is a new drug approved by the FDA for Parkinson's disease psychosis and other neurological disorders such as Alzheimer's disease. In this study, we developed a UPLC-MS/MS method to quantify pimavanserin disposition in the brain and its pharmacokinetics in mice. Vilazodone was used as the internal standard. Pimavanserin and IS were extracted by liquid-liquid extraction using tert-butyl methyl ether and separated using an Acquity UPLC BEH™ C18 column. The mobile phase consisted of solvent A (0.1% formic acid in acetonitrile) and B (0.1% formic acid in 20 mM ammonium acetate buffer) (A: B, 70:30 v/v) at a flow rate of 0.25 ml/min. The multiple reaction monitoring transitions were performed at m/z 428.23 â 98.15 for pimavanserin and m/z 441.70 > 155.03 for the IS. The developed method was found to be sensitive, fast, and reproducible. The linearity of the method was Ë0.99 over the range of 0.1-300 ng/mL in plasma and 0.25-300 ng/g in the brain homogenate. Precision and accuracy were within the acceptance range. The method was applied to pharmacokinetics and brain uptake studies, which showed that pimavanserin penetrates the blood-brain barrier and reaches a Cmax of 21.9 ± 6.66 ng/g in 2.0 h. We also found that pimavanserin brain to plasma ratio (Kbrain/plasma) is 0.16 ± 0.05 and it is rapidly eliminated.
Assuntos
Piperidinas/metabolismo , Piperidinas/farmacocinética , Ureia/análogos & derivados , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Extração Líquido-Líquido , Camundongos , Plasma/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Ureia/metabolismo , Ureia/farmacocinéticaRESUMO
Several reports have highlighted the role of vinpocetine in Alzheimer's disease (AD). However, the role of vinpocetine in AD under social isolation conditions has not yet been elucidated. Henceforth, this study aimed to investigate the potential neuroprotective effect of vinpocetine in aluminum-induced AD model associated with social isolation. Social isolation increased the escape latency in Morris water maze (MWM) test, elevated the immobility score and decreased swimming score in forced swimming test (FST) in aluminum treated rats. However, vinpocetine enhanced acquisition in MWM test and exerted anti-depressive effect in FST. The histopathological examination showed marked deterioration in the cerebral cortex and hippocampus of AD isolated rats, while vinpocetine revealed overt improvement. In addition, the levels of amyloid-ß protein (Aß), phosphorylated-tau (Ser396), malondialdehyde (MDA), interleukin 1-beta (IL-1ß), tumor necrosis alpha (TNFα), p- Glycogen synthase kinase-3ß (p-GSK3ß) (Tyr216), and ß-secretase (BACE1) gene expression were increased in socially isolated aluminum treated rats, yet, vinpocetine treatment reversed these deteriorating effects. Hence, this study provides profound insights into the role of vinpocetine in AD particularly in the conditions of social isolation. The effects of vinpocetine might be attributed not only to its antioxidant and anti-inflammatory properties, but also to its suppressing effect on GSK3ß activity and its downstream BACE1.
Assuntos
Alumínio/efeitos adversos , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Isolamento Social/psicologia , Alcaloides de Vinca/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Alzheimer's disease is a neurodegenerative disorder characterized by a progressive decline of cognitive abilities as well as bone loss. Physical and mental activities maintain cognitive functions as well as increase bone mass by inhibiting bone resorption. VIN and CoQ10 are neuroprotective drugs that possess anti-inflammatory and antioxidant properties. AIMS: To study the effect of PH&M on enhancing the neuroprotective role of VIN and CoQ10 combination during induction of AD model in rats besides their role against bone mass loss associated with AD model. MAIN METHODS: Six groups of rats were received saline, AlCl3, and PH&M daily either alone or with a combination of VIN and CoQ10 for 4â¯weeks. Various biochemical analyses were performed to evaluate the extent of brain damage such as ACHE, ß-secretase, chitinase, Aß, tau protein, and monoamines besides the inflammatory and antioxidant parameters. Serum levels of minerals as well as 25-OHD, PTH, RANKL, and OPG levels were measured to detect the extent of bone impairment. Also, histopathological changes were evaluated in different brain regions and hind paw. KEY FINDINGS: VIN and CoQ10 combination together with PH&M significantly attenuated the neurodegeneration induced by AlCl3 administration through the improvement of AD markers in brain tissue as well as oxidant and inflammatory markers. Bone resorption markers, serum minerals, and PTH levels were also normalized too. SIGNIFICANCE: Neuroprotective drugs together with PH&M have a more protective effect against AD and bone loss rather than PH&M alone.
Assuntos
Doença de Alzheimer/prevenção & controle , Remodelação Óssea/fisiologia , Cognição , Fármacos Neuroprotetores/farmacologia , Natação , Ubiquinona/análogos & derivados , Alcaloides de Vinca/farmacologia , Doença de Alzheimer/metabolismo , Animais , Comportamento Animal , Remodelação Óssea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Terapia Combinada , Masculino , Ratos , Ratos Sprague-Dawley , Ubiquinona/farmacologia , Vitaminas/farmacologiaRESUMO
AIM: 16 thioxoquinazolines were evaluated in vivo for anti-inflammatory activity using carrageenan-induced paw edema assay. RESULTS: In particular, out of the targets (1-16), compounds 4 and 6 displayed the highest anti-inflammatory activity (≥80%) and furtherly tested against complete Freund's adjuvant-induced arthritic rats. Significant reduction in the serum level of IL-1ß, COX-2 and prostaglandin E2 in the complete Freund's adjuvant rats is demonstrated by compounds 4 and 6. Furthermore, compound 4 showed non-selective activity against COX-1 and COX 2, however, compound 6 was specific toward COX-2. Molecular docking study has demonstrated the possible binding modes of the active quinazolines 4 and 6 in the COX-2 active site. CONCLUSION: These targets could be used as templates for further development of new derivatives with potent anti-inflammatory activity.
Assuntos
Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Edema/tratamento farmacológico , Quinazolinas/farmacologia , Animais , Antirreumáticos/síntese química , Antirreumáticos/química , Carragenina , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Ratos , Relação Estrutura-AtividadeRESUMO
The main objective of this work was to synthesize novel compounds with a benzo[de][1,2,4]triazolo[5,1-a]isoquinoline scaffold by employing (dioxo-benzo[de]isoquinolin-2-yl) thiourea as a building block. Molecular docking was conducted in the COX-2 active site to predict the plausible binding mode and rationalize the structure-activity relationship of the synthesized compounds. The structures of the synthesized compounds were confirmed by HREI-MS, and NMR spectra along with X-ray diffraction were collected for products 1 and 5. Thereafter, anti-inflammatory effect of molecules 1-20 was evaluated in vivo using carrageenan-induced paw edema method, revealing significant inhibition potency in albino rats with an activity comparable to that of the standard drugs indomethacin. Compounds 8, 9, 15 and 16 showed the highest anti-inflammatory activity. However, thermal sensitivity-hot plat test, a radiological examination and motor coordination assessment were performed to test the activity against rheumatoid arthritis. The obtained results indicate promising anti-arthritic activity for compounds 9 and 15 as significant reduction of the serum level of interleukin-1ß [IL-1ß], cyclooxygenase-2 [COX-2] and prostaglandin E2 [PGE2] was observed in CFA rats.