Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell Biochem ; 476(1): 385-399, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32974832

RESUMO

The current study evaluated the outcome of dietary folate modulations on the expression of tumor suppressor genes (TSGs) during developmental stages of hepatocellular carcinoma (HCC) in a Wistar rat model. In addition to dietary folate modulations, male rats were administered diethylnitrosamine (DEN) intraperitoneally once a week upto 18 weeks to induce HCC. Serum folate levels were found to be decreased and increased in folate deficiency (FD) and folate-oversupplemented (FO) groups respectively when compared to folate normal (FN) rats. Apoptosis was observed in FD in fibrosis and HCC stages. mRNA expression analysis by RT-PCR of TSGs (DPT, p16, RUNX3, RASSF1A and SOCS1) and protein expression by western blot (RASSF1A, RUNX3 and p16) depicted differential expression in FD and FO in various stages of HCC development. Bisulfite sequencing for p16 and RASSF1A promoter was performed. The promoter region of p16 gene was hypermethylated at 7th and that of RASSF1A was hypomethylated at 10th CpG in cirrhotic category in FD rats. Hyper and hypomethylation at 10th and 24th CpG respectively in RASSF1A promoter was observed in HCC category in both FD and FO groups. All TSGs showed differential expression at transcript and protein level. Increased expression of DPT, RASSF1A, SOCS1 and decreased expression of RUNX3 could be playing role in HCC development in FD rats. Reduced expression of RUNX3, RASSF1A and SOCS1 in HCC category was demonstrated in FO rats. Thus, the studied TSGs are differentially expressed with dietary folate modulations during the development of HCC in DEN-treated rat model and the promoter methylation might be a contributing mechanism under these conditions.


Assuntos
Carcinoma Hepatocelular/metabolismo , Dieta , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias Hepáticas/metabolismo , Ração Animal , Animais , Apoptose , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Fragmentação do DNA , Metilação de DNA , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteínas Supressoras de Tumor/genética
2.
Mol Cell Biochem ; 476(11): 3923-3933, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34165682

RESUMO

Chronic infection with HBV has been reported to be associated with the development of HCC. The inflammation mounted by cytokine-mediated immune system plays an important role in the pathogenesis of HBV-associated HCC. IL-18 is a pro-inflammatory cytokine whose role in the development of HBV-associated chronic to malignant disease state has not been much studied. The present study was conceived to determine the role of genetic polymorphisms in IL-18, serum levels of IL-18, and expression level of its signal transducers in the HBV disease progression. A total of 403 subjects were enrolled for this study including 102 healthy subjects and 301 patients with HBV infection in different diseased categories. Polymorphism was determined using PCR-RFLP. Genotypic distributions between the groups were compared using odd's ratio and 95% CI were calculated to express the relative risk. Circulating IL-18 levels were determined by ELISA. Expression levels of pSTAT-1 and pNFƙB was determined by western blotting. In case of IL-18(- 607C > A), the heterozygous genotype (CA) was found to be a protective factor while in case of IL-18(- 137G > C) the heterozygous genotype (GC) acted as a risk factor for disease progression from HBV to HCC. Moreover, serum IL-18 levels were significantly increased during HBV disease progression to HCC as compared to controls. Also the levels of activated signal transducers (pSTAT-1 and pNF-κB) of IL-18 in stimulated PBMCs were significantly increased during HBV to HCC disease progression. These findings suggest that IL-18 has the potential to act as a biomarker of HBV-related disease progression to HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Interleucina-18/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Adulto , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Predisposição Genética para Doença , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/patologia , Masculino , Polimorfismo de Nucleotídeo Único
3.
Sci Rep ; 12(1): 16617, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198749

RESUMO

Folate ingestion below and above the physiologic dose has been shown to play a tumorigenic role in certain cancers. Also, excessive folate supplementation after establishment of pre-established lesions led to an advancement in the growth of a few tumors. However, such information has not yet been achieved in the case of HCC. In our study, HepG2 cells were administered with three different concentrations of folic acid i.e. folic acid normal (FN) (2.27 µM), folic acid deficient (FD) (no folic acid), folic acid oversupplementation (FO) (100 µM) for 10 days. Intracellular folate levels were assayed by Elecsys Folate III kit based method. The migratory and invasive abilities were estimated by transwell migration and matrigel invasion methods respectively. FACS was done to evaluate cell viability and apoptosis. Agarose-coated plates were used to access cancer stem cells (CSCs) number. Quantitative RT-PCR and western blotting approaches were used for gene and protein expression of certain tumor suppressor genes (TSGs), respectively. FD cells depicted increased migration, invasion, apoptosis, necrosis and decreased cell viability, CSCs. On the other hand, FO cells showed increased migration, invasion, cell viability and number of CSCs and decreased apoptosis and necrosis. TSGs revealed diminished expression with both FA modulations with respect to FN cells. Thus, FA deficiency as well as abundance enhanced the HCC progression by adapting different mechanisms.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogênese , Carcinoma Hepatocelular/genética , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Necrose , Sefarose
4.
J Mol Histol ; 52(2): 335-350, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33438102

RESUMO

The present study evaluated the role of dietary folate modulations in the development of hepatocellular carcinoma (HCC) in a rat model. Male Wistar rats were given diethylnitrosamine (DEN) carcinogen for a period of 18 weeks in addition to different folate modulations. Biochemical parameters were assayed and liver tissues were examined using various histopathological stains viz. Hematoxylin and eosin (H&E), Masson's trichrome, Immunohistochemistry (IHC) staining for arginase-1 and α-smooth muscle actin (SMA). Serum folate and hepatic folate stores were decreased and increased in folate deficiency (FD) and folate oversupplemented (FO) group respectively. Analysis of serum liver function tests revealed deranged liver functioning in all the groups. H&E staining of rat liver demonstrated vague nodularity from 2nd to 8th week, fibrosis from 10th to 15th week, cirrhosis and HCC from 16th to 18th week. Combining the observations of H&E with IHC for arginase-1, 14 (50%), 11 (39.3%) and 17 (58.6%) rats showed HCC positivity in FN (folate normal), FD and FO diets respectively. IHC for α-SMA depicted increased staining with progression of the disease from fibrosis to cirrhosis in all the dietary groups. Collectively, findings of all the histopathological stains, revealed increase in the number of cirrhotic cases and decrease in the number of HCC cases in FD group, indicating delayed progression of HCC with FD. Moreover, FO led to more number of HCC and reduction in the number of cirrhotic cases, signifying early progression of HCC.


Assuntos
Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Dietilnitrosamina/toxicidade , Ácido Fólico/uso terapêutico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Animais , Fígado/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Masculino , Ratos , Ratos Wistar
5.
Front Genet ; 11: 844, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849827

RESUMO

The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA