Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Cell ; 36(5): 1791-1805, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38267818

RESUMO

Polar auxin transport in the Arabidopsis (Arabidopsis thaliana) root tip maintains high auxin levels around the stem cell niche that gradually decrease in dividing cells but increase again once they transition toward differentiation. Protophloem differentiates earlier than other proximal tissues and employs a unique auxin "canalization" machinery that is thought to balance auxin efflux with retention. It consists of a proposed activator of PIN-FORMED (PIN) auxin efflux carriers, the cAMP-, cGMP- and Calcium-dependent (AGC) kinase PROTEIN KINASE ASSOCIATED WITH BRX (PAX); its inhibitor, BREVIS RADIX (BRX); and PHOSPHATIDYLINOSITOL-4-PHOSPHATE-5-KINASE (PIP5K) enzymes, which promote polar PAX and BRX localization. Because of a dynamic PAX-BRX-PIP5K interplay, the net cellular output of this machinery remains unclear. In this study, we deciphered the dosage-sensitive regulatory interactions among PAX, BRX, and PIP5K by their ectopic expression in developing xylem vessels. The data suggest that the dominant collective output of the PAX-BRX-PIP5K module is a localized reduction in PIN abundance. This requires PAX-stimulated clathrin-mediated PIN endocytosis upon site-specific phosphorylation, which distinguishes PAX from other AGC kinases. An ectopic assembly of the PAX-BRX-PIP5K module is sufficient to cause cellular auxin retention and affects root growth vigor by accelerating the trajectory of xylem vessel development. Our data thus provide direct evidence that local manipulation of auxin efflux alters the timing of cellular differentiation in the root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transporte Biológico , Xilema/metabolismo , Xilema/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética
2.
J Plant Physiol ; 269: 153594, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953411

RESUMO

Spatiotemporal cues orchestrate the development of organs and cellular differentiation in multicellular organisms. For instance, in the root apical meristem an auxin gradient patterns the transition from stem cell maintenance to transit amplification and eventual differentiation. Among the proximal tissues generated by this growth apex, the early, so-called protophloem, is the first tissue to differentiate. This observation has been linked to increased auxin activity in the developing protophloem sieve element cell files as compared to the neighboring tissues. Here we review recent progress in the characterization of the unique mechanism by which auxin canalizes its activity in the developing protophloem and fine-tunes its own transport to guide proper timing of protophloem sieve element differentiation.


Assuntos
Ácidos Indolacéticos/metabolismo , Floema/crescimento & desenvolvimento , Floema/metabolismo , Plantas/metabolismo , Transporte Biológico , Meristema/metabolismo
3.
Mol Plant ; 14(12): 1985-1999, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34358681

RESUMO

The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified. In this study, we combined digital 3D single-cell shape analysis and single-cell mRNA sequencing to characterize root meristems and mature root segments of brassinosteroid-blind mutants and wild type. The resultant datasets demonstrate that brassinosteroid signaling affects neither cell volume nor cell proliferation capacity. Instead, brassinosteroid signaling is essential for the precise orientation of cell division planes and the extent and timing of anisotropic cell expansion. Moreover, we found that the cell-aligning effects of brassinosteroid signaling can propagate to normalize the anatomy of both adjacent and distant brassinosteroid-blind cells through non-cell-autonomous functions, which are sufficient to restore growth vigor. Finally, single-cell transcriptome data discern directly brassinosteroid-responsive genes from genes that can react non-cell-autonomously and highlight arabinogalactans as sentinels of brassinosteroid-dependent anisotropic cell expansion.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Diferenciação Celular/efeitos dos fármacos , Raízes de Plantas/citologia , Arabidopsis/metabolismo , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transcriptoma/efeitos dos fármacos
4.
Nat Commun ; 11(1): 2965, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528082

RESUMO

Trajectories of cellular ontogeny are tightly controlled and often involve feedback-regulated molecular antagonism. For example, sieve element differentiation along developing protophloem cell files of Arabidopsis roots requires two antagonistic regulators of auxin efflux. Paradoxically, loss-of-function in either regulator triggers similar, seemingly stochastic differentiation failures of individual sieve element precursors. Here we show that these patterning defects are distinct and non-random. They can be explained by auxin-dependent bistability that emerges from competition for auxin between neighboring cells. This bistability depends on the presence of an auxin influx facilitator, and can be triggered by either flux enhancement or repression. Our results uncover a hitherto overlooked aspect of auxin uptake, and highlight the contributions of local auxin influx, efflux and biosynthesis to protophloem formation. Moreover, the combined experimental-modeling approach suggests that without auxin efflux homeostasis, auxin influx interferes with coordinated differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Transformação Genética/genética
5.
Curr Biol ; 30(15): 2887-2900.e7, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32531282

RESUMO

Cambium drives the lateral growth of stems and roots, contributing to diverse plant growth forms. The root crop is one of the outstanding examples of the cambium-driven growth. To understand its molecular basis, we used radish to generate a compendium of root-tissue- and stage-specific transcriptomes from two contrasting inbred lines during root growth. Expression patterns of key cambium regulators and hormone signaling components were validated. Clustering and gene ontology (GO) enrichment analyses of radish datasets followed by a comparative analysis against the newly established Arabidopsis early cambium data revealed evolutionary conserved stress-response transcription factors that may intimately control the cambium. Indeed, an in vivo network consisting of selected stress-response and cambium regulators indicated ERF-1 as a potential key checkpoint of cambial activities, explaining how cambium-driven growth is altered in response to environmental changes. The findings here provide valuable information about dynamic gene expression changes during cambium-driven root growth and have implications with regard to future engineering schemes, leading to better crop yields.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Câmbio/genética , Câmbio/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raphanus/crescimento & desenvolvimento , Raphanus/genética , Transcriptoma/genética , Proteínas de Arabidopsis , Meio Ambiente , Transcriptoma/fisiologia
6.
Dev Cell ; 52(2): 223-235.e5, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31866202

RESUMO

Cell polarity is a key feature in the development of multicellular organisms. For instance, asymmetrically localized plasma-membrane-integral PIN-FORMED (PIN) proteins direct transcellular fluxes of the phytohormone auxin that govern plant development. Fine-tuned auxin flux is important for root protophloem sieve element differentiation and requires the interacting plasma-membrane-associated BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX) proteins. We observed "donut-like" polar PIN localization in developing sieve elements that depends on complementary, "muffin-like" polar localization of BRX and PAX. Plasma membrane association and polarity of PAX, and indirectly BRX, largely depends on phosphatidylinositol-4,5-bisphosphate. Consistently, mutants in phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) display protophloem differentiation defects similar to brx mutants. The same PIP5Ks are in complex with BRX and display "muffin-like" polar localization. Our data suggest that the BRX-PAX module recruits PIP5Ks to reinforce PAX polarity and thereby the polarity of all three proteins, which is required to maintain a local PIN minimum.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Polaridade Celular , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Mutação , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
7.
Biol Open ; 8(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30787007

RESUMO

Cambium contains a stem cell population that produces xylem and phloem tissues in a radial direction during the secondary growth stage. The growth of many storage roots, including in the radish, Raphanus sativus L., also depends on cambium. Interestingly, we observed numerous adventitious roots (ARs) emerging from the cambia of cut surfaces when the bases of radish storage tap roots were removed. Previous studies in Arabidopsis showed that the WOX11/12 pathway regulates AR initiation and meristem establishment in an auxin-dependent manner. Here, we provide evidence indicating the evolutionary conservation of the WOX11/12 pathway during the AR development in radishes. Additionally, we found that expression of two cambium regulators, PXY and WOX4, is induced in the cambium regions that are connected to emerging ARs via vascularization. Both AR formation and genes associated with this were induced by exogenous auxin. Our research suggests that some key cambium regulators might be reprogrammed to aid in the AR development in concert with the WOX11/12 pathway.This article has an associated First Person interview with the first author of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA