Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(26): 265102, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29629877

RESUMO

Immunosensors based on interdigitated electrodes (IDEs), have recently demonstrated significant improvements in the sensitivity of capacitance detection. Herein, a novel type of highly sensitive, compact and portable immunosensor based on a gold interdigital capacitor has been designed and developed for the rapid detection of hepatitis B surface antigen (HBsAg). To improve the efficiency of antibody immobilization and time-saving, a self-assembled monolayer (SAM) of 2-mercaptoethylamine film was coated on IDEs. Afterwards, carboxyl groups on primary antibodies were activated through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and were immobilized on amino-terminated SAM for better control of the oriented immobilization of antibodies on gold IDEs. In addition, gold nanoparticles conjugated with a secondary antibody were used to enhance the sensitivity. Under optimal conditions, the immunosensor exhibited the sensitivity of 0.22 nF.pg ml-1, the linear range from 5 pg ml-1 to 1 ng ml-1 and the detection limit of 1.34 pg ml-1, at a signal-to-noise ratio of 3.


Assuntos
Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/métodos , Capacitância Elétrica , Ouro/química , Nanopartículas Metálicas/química , Calibragem , Eletrodos , Antígenos de Superfície da Hepatite B/sangue , Humanos , Imunoensaio , Nanopartículas Metálicas/ultraestrutura , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta
2.
Adv Sci (Weinh) ; 10(34): e2302461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807811

RESUMO

In the quest to produce artificial cells, one key challenge that remains to be solved is the recreation of a complex cellular membrane. Among the existing models, giant unilamellar vesicles (GUVs) are particularly interesting due to their intrinsic compartmentalisation ability and their resemblance in size and shape to eukaryotic cells. Many techniques have been developed to produce GUVs all having inherent advantages and disadvantages. Here, the authors show that fluorinated silica nanoparticles (FNPs) used to form Pickering emulsions in a fluorinated oil can destabilise lipid nanosystems to template the formation of GUVs. This technique enables GUV production across a broad spectrum of buffer conditions, while preventing the leakage of the encapsulated components into the oil phase. Furthermore, a simple centrifugation process is sufficient for the release of the emulsion-trapped GUVs, bypassing the need to use emulsion-destabilising chemicals. With fluorescent FNPs and transmission electron microscopy, the authors confirm that FNPs are efficiently removed, producing contaminant-free GUVs. Further experiments assessing the lateral diffusion of lipids and unilamellarity of the GUVs demonstrate that they are comparable to GUVs produced via electroformation. Finally, the ability of incorporating transmembrane proteins is demonstrated, highlighting the potential of this method for the production of GUVs for artificial cell applications.


Assuntos
Células Artificiais , Lipossomas Unilamelares , Emulsões , Membrana Celular , Proteínas de Membrana
3.
Biomaterials ; 298: 122126, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37094524

RESUMO

Natural killer (NK) cells play a crucial role in recognizing and killing emerging tumor cells. However, tumor cells develop mechanisms to inactivate NK cells or hide from them. Here, we engineered a modular nanoplatform that acts as NK cells (NK cell-mimics), carrying the tumor-recognition and death ligand-mediated tumor-killing properties of an NK cell, yet without being subject to tumor-mediated inactivation. NK cell mimic nanoparticles (NK.NPs) incorporate two key features of activated NK cells: cytotoxic activity via the death ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and an adjustable tumor cell recognition feature based on functionalization with the NK cell Fc-binding receptor (CD16, FCGR3A) peptide, enabling the NK.NPs to bind antibodies targeting tumor antigens. NK.NPs showed potent in vitro cytotoxicity against a broad panel of cancer cell lines. Upon functionalizing the NK.NPs with an anti-CD38 antibody (Daratumumab), NK.NPs effectively targeted and eliminated CD38-positive patient-derived acute myeloid leukemia (AML) blasts ex vivo and were able to target and kill CD38-positive AML cells in vivo, in a disseminated AML xenograft system and reduced AML burden in the bone marrow compared to non-targeted, TRAIL-functionalized liposomes. Taken together, NK.NPs are able to mimicking key antitumorigenic functions of NK cells and warrant their development into nano-immunotherapeutic tools.


Assuntos
Leucemia Mieloide Aguda , Nanopartículas , Humanos , Ligantes , Células Matadoras Naturais , Leucemia Mieloide Aguda/tratamento farmacológico , Apoptose , Fator de Necrose Tumoral alfa , Citotoxicidade Imunológica
4.
Cancers (Basel) ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291908

RESUMO

The death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF cytokine superfamily, has long been recognized for its potential as a cancer therapeutic due to its low toxicity against normal cells. However, its translation into a therapeutic molecule has not been successful to date, due to its short in vivo half-life associated with insufficient tumor accumulation and resistance of tumor cells to TRAIL-induced killing. Nanotechnology has the capacity to offer solutions to these limitations. This review provides a perspective and a critical assessment of the most promising approaches to realize TRAIL's potential as an anticancer therapeutic, including the development of fusion constructs, encapsulation, nanoparticle functionalization and tumor-targeting, and discusses the current challenges and future perspectives.

5.
J Biomol Struct Dyn ; 35(3): 603-615, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27151742

RESUMO

In this study, a novel method to probe molecular interactions and binding of human hemoglobin (Hb) with nanodiamond (ND) was introduced based on the surface tension measurement. This method complements conventional techniques, which are basically done by zeta potential and dynamic light scattering (DLS) measurements, near and far circular dichroism (CD) spectroscopy, intrinsic and extrinsic fluorescence spectroscopy. Addition of ND to Hb solution increased the surface tension value of Hb-ND complex relative to those of Hb and ND molecules. The zeta potential values reveled that Hb and ND provide identical charge distribution at pH 7.5. DLS measurements demonstrated that Hb, ND, and ND-Hb complex have hydrodynamic radiuses of 98.37 ± 4.57, 122.07 ± 7.88 nm and 62.27 ± 3.70 at pH of 7.5 respectively. Far and near UV-CD results indicated the loss of α-helix structure and conformational changes of Hb, respectively. Intrinsic fluorescence data demonstrated that the fluorescence quenching of Hb by ND was the result of the static quenching. The hydrophobic interaction plays a pivotal role in the interaction of ND with Hb. Fluorescence intensity changes over time revealed conformational change of Hb continues after the mixing of the components (Hb-ND) till 15 min, which is indicative of the denaturation of the Hb relative to the protein control. Extrinsic fluorescence data showed a considerable enhancement of the ANS fluorescence intensity of Hb-ND system relative to the Hb till 60 nM of ND, likely persuaded by greater exposure of nonpolar residues of Hb hydrophobic pocket. The remarkable decrease in Tm value of Hb in Hb-ND complex exhibits interaction of Hb with ND conducts to conformational changes of Hb. This study offers consequential discrimination into the interaction of ND with proteins, which may be of significance for further appeal of these nanoparticles in biotechnology prosecution.


Assuntos
Hemoglobinas/química , Nanodiamantes/química , Análise Espectral , Tensão Superficial , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Fluorescência , Termodinâmica
6.
J Biomol Struct Dyn ; 35(12): 2565-2577, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27632558

RESUMO

Herein, the interaction of iron nanoparticle (Fe-NP) with cytochrome c (Cyt c) was investigated, and a range of techniques such as dynamic light scattering (DLS), zeta potential measurements, static and synchronous fluorescence spectroscopy, near and far circular dichroism (CD) spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy were used to analyze the interaction between Cyt c and Fe-NP. DLS and zeta potential measurements showed that the values of hydrodynamic radius and charge distribution of Fe-NP are 83.95 ± 3.7 nm and 4.5 ± .8 mV, respectively. The fluorescence spectroscopy results demonstrated that the binding of Fe-NP with Cyt c is mediated by hydrogen bonds and van der Waals interactions. Also Fe-NP induced conformational changes in Cyt c and reduced the melting temperature value of Cyt c from 79.18 to 71.33°C. CD experiments of interaction between Fe-NP and Cyt c revealed that the secondary structure of Cyt c with the dominant α-helix structures remained unchanged whereas the tertiary structure and heme position of Cyt c are subjected to remarkable changes. Absorption spectroscopy at 695 nm revealed that Fe-NP considerably disrupt the Fe…S(Met80) bond. In addition, the UV-vis experiment showed the peroxidase-like activity of Cyt c upon interaction with Fe-NP. Hence, the data indicate the Fe-NP results in unfolding of Cyt c and subsequent peroxidase-like activity of denatured species. It was concluded that a comprehensive study of the interaction of Fe-NP with biological system is a crucial step for their potential application as intracellular delivery carriers and medicinal agents.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Ferro/metabolismo , Nanopartículas Metálicas/química , Peroxidases/metabolismo , Conformação Proteica , Animais , Bovinos , Difusão Dinâmica da Luz , Ferro/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA