Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 16(1): 128-140, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525660

RESUMO

Polymeric systems have been extensively studied as polyelectrolyte complexes to enhance the cellular delivery and transfection efficiency of genetic materials, such as plasmid DNA (pDNA). Here, self-assembled nanoparticles were formulated by complexation of hyaluronic acid (HA)-conjugated poly(ethylene glycol) (HA-PEG) and poly(ethylenimine) (HA-PEI), respectively, with pDNA creating relatively small, stable, and multifunctional nanoparticle complex formulations with high transfection efficiency. This formulation strategy offers high gene expression efficiency and negligible cytotoxicity in HeLa and A549 human lung cancer cell lines. To develop the ideal formulation, in vitro transfection efficiency was studied for three different nanoparticle formulations (HA-PEI/HA-PEG, HA-PEI, and HA-PEG) with different concentrations. The combination of the three polymers (HA, PEG, and PEI) was significant for the formulation to achieve the maximum gene expression results. The nanoparticles were found to be stable for up to a week at 4 °C conditions. Overall, these HA-based nanoparticles showed promising aspects that can be utilized in the designing of gene delivery vectors for cancer therapy.


Assuntos
Ácido Hialurônico/química , Nanopartículas/química , Plasmídeos/genética , Transfecção/métodos , Células A549 , Sulfato de Dextrana/química , Células HeLa , Humanos , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Polietilenoimina/química
2.
Pharm Dev Technol ; 23(4): 382-386, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28346840

RESUMO

Owing to its limited aqueous solubility, Phytomenadione (vitamin K) undergoes a low bioavailability (50%) with a large inter-individual variability after oral administration. Therefore, the aim of this work was to incorporate vitamin K into nanostructure lipid carrier systems to improve its aqueous solubility and bioavailability. Phytomenadione was used as a liquid lipid; Precirol ATO5, and Compritol ATO were used as solid lipids; Labrasol and Cremophore EL as water soluble surfactants; Capryol 90 and Lauroglycol as lipid soluble surfactants. Eight formulas were prepared and characterized for their particle sizes, zeta potential, entrapment efficiencies, and drug release. Those formulas had particle sizes ranging from 25.4 to 68.3 nm. The best formula, consisting of 15% Phytomenadione, 45% Precirol ATO5, 30% Cremophore EL, and 10% Lauroglycol 90, was selected for stability study and characterized by the techniques mentioned above and scanning electron microscopy. It had the highest drug loading and an acceptable in vitro release profile (94.54% within 30 min). This formula was also chemically and physically stable, and it recorded a relative bioavailability of 645.5% in rabbits compared to the commercial conventional tablet. This formula could be a promising carrier regarding its ease of preparation, dosage form versatility and enhanced bioavailability.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Vitamina K 1/administração & dosagem , Vitamina K 1/farmacocinética , Vitaminas/administração & dosagem , Vitaminas/farmacocinética , Animais , Antifibrinolíticos/administração & dosagem , Antifibrinolíticos/química , Antifibrinolíticos/farmacocinética , Disponibilidade Biológica , Liberação Controlada de Fármacos , Coelhos , Solubilidade , Tensoativos/química , Comprimidos , Termodinâmica , Vitamina K 1/química , Vitaminas/química
3.
Int J Nanomedicine ; 11: 441-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26869787

RESUMO

BACKGROUND AND OBJECTIVE: Miconazole is a broad-spectrum antifungal drug that has poor aqueous solubility (<1 µg/mL); as a result, a reduction in its therapeutic efficacy has been reported. The aim of this study was to formulate and evaluate miconazole-loaded solid lipid nanoparticles (MN-SLNs) for oral administration to find an innovative way to alleviate the disadvantages associated with commercially available capsules. METHODS: MN-SLNs were prepared by hot homogenization/ultrasonication. The solubility of miconazole in different solid lipids was measured. The effect of process variables, such as surfactant types, homogenization and ultrasonication times, and the charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release, antifungal activity against Candida albicans, and in vivo pharmacokinetics were studied in rabbits. RESULTS: The MN-SLN, consisting of 1.5% miconazole, 2% Precirol ATO5, 2.5% Cremophor RH40, 0.5% Lecinol, and 0.1% Dicetylphosphate, had an average diameter of 23 nm with a 90.2% entrapment efficiency. Furthermore, the formulation of MN-SLNs enhanced the antifungal activity compared with miconazole capsules. An in vivo pharmacokinetic study revealed that the bioavailability was enhanced by >2.5-fold. CONCLUSION: MN-SLN was more efficient in the treatment of candidiasis with enhanced oral bioavailability and could be a promising carrier for the oral delivery of miconazole.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Lipídeos/química , Miconazol/farmacologia , Nanopartículas/administração & dosagem , Administração Oral , Animais , Antifúngicos/química , Disponibilidade Biológica , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Química Farmacêutica , Masculino , Miconazol/química , Nanopartículas/química , Tamanho da Partícula , Coelhos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA