Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Clin Pharmacol ; 80(6): 869-890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421437

RESUMO

BACKGROUND: Antipsychotics, including risperidone (RIS), are frequently indicated for various autism spectrum disorder (ASD) manifestations; however, "actionable" PGx testing in psychiatry regarding antipsychotic dosing and selection has limited applications in routine clinical practice because of the lack of standard guidelines, mostly due to the inconsistency and scarcity of genetic variant data. The current study is aimed at examining the association of RIS effectiveness, according to ABC-CV and CGI indexes, with relevant pharmacokinetics (PK) and pharmacodynamics (PD) genes. METHODS: Eighty-nine ASD children who received a consistent RIS-based regimen for at least 8 weeks were included. The Axiom PharmacoFocus Array technique was employed to generate accurate star allele-predicted phenotypes of 3 PK genes (CYP3A4, CYP3A5, and CYP2D6). Genotype calls for 5 candidate PD receptor genes (DRD1, DRD2, DRD3, HTR2C, and HTR2A) were obtained and reported as wild type, heterozygous, or homozygous for 11 variants. RESULTS: Based on the ABC total score, 42 (47.2%) children were classified as responders, while 47 (52.8%) were classified as nonresponders. Multivariate logistic regression analyses, adjusted for nongenetic factors, suggested nonsignificant impacts of the star allele-predicted phenotypes of all 3 PK genes on improvement in ASD symptoms or CGI scores. However, significant positive or negative associations of certain PD variants involved in dopaminergic and serotonergic pathways were observed with specific ASD core and noncore symptom subdomains. Our significant polymorphism findings, mainly those in DRD2 (rs1800497, rs1799978, and rs2734841), HTR2C (rs3813929), and HTR2A (rs6311), were largely consistent with earlier findings (predictors of RIS effectiveness in adult schizophrenia patients), confirming their validity for identifying ASD children with a greater likelihood of core symptom improvement compared to noncarriers/wild types. Other novel findings of this study, such as significant improvements in DRD3 rs167771 carriers, particularly in ABC total and lethargy/social withdrawal scores, and DRD1 rs1875964 homozygotes and DRD2 rs1079598 wild types in stereotypic behavior, warrant further verification in biochemical and clinical studies to confirm their feasibility for inclusion in a PGx panel. CONCLUSION: In conclusion, we provide evidence of potential genetic markers involved in clinical response variability to RIS therapy in ASD children. However, replication in prospective samples with greater ethnic diversity and sample sizes is necessary.


Assuntos
Antipsicóticos , Risperidona , Humanos , Risperidona/farmacocinética , Risperidona/uso terapêutico , Masculino , Criança , Feminino , Antipsicóticos/farmacocinética , Antipsicóticos/uso terapêutico , Arábia Saudita , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/tratamento farmacológico , Pré-Escolar , Genótipo , Farmacogenética , Citocromo P-450 CYP3A/genética , Polimorfismo Genético , Resultado do Tratamento , Citocromo P-450 CYP2D6/genética , Adolescente
2.
Front Pharmacol ; 15: 1356763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375040

RESUMO

Background: Autism spectrum disorders (ASDs) encompass a broad range of phenotypes characterized by diverse neurological alterations. Genomic studies have revealed considerable overlap between the molecular mechanisms implicated in the etiology of ASD and genes involved in the pharmacokinetic (PK) and pharmacodynamic (PD) pathways of antipsychotic drugs employed in ASD management. Given the conflicting data originating from candidate PK or PD gene association studies in diverse ethnogeographic ASD populations, dosage individualization based on "actionable" pharmacogenetic (PGx) markers has limited application in clinical practice. Additionally, off-label use of different antipsychotics is an ongoing practice, which is justified given the shortage of approved cures, despite the lack of satisfactory evidence for its safety according to precision medicine. This exploratory study aimed to identify PGx markers predictive of risperidone (RIS) exposure in autistic Saudi children. Methods: This prospective cohort study enrolled 89 Saudi children with ASD treated with RIS-based antipsychotic therapy. Plasma levels of RIS and 9-OH-RIS were measured using a liquid chromatography-tandem mass spectrometry system. To enable focused exploratory testing, genotyping was performed with the Axiom PharmacoFocus Array, which included a collection of probe sets targeting PK/PD genes. A total of 720 PGx markers were included in the association analysis. Results: A total of 27 PGx variants were found to have a prominent impact on various RIS PK parameters; most were not located within the genes involved in the classical RIS PK pathway. Specifically, 8 markers in 7 genes were identified as the PGx markers with the strongest impact on RIS levels (p < 0.01). Four PGx variants in 3 genes were strongly associated with 9-OH-RIS levels, while 5 markers in 5 different genes explained the interindividual variability in the total active moiety. Notably, 6 CYP2D6 variants exhibited strong linkage disequilibrium; however, they significantly influenced only the metabolic ratio and had no considerable effects on the individual estimates of RIS, 9-OH-RIS, or the total active moiety. After correction for multiple testing, rs78998153 in UGT2B17 (which is highly expressed in the brain) remained the most significant PGx marker positively adjusting the metabolic ratio. For the first time, certain human leukocyte antigen (HLA) markers were found to enhance various RIS exposure parameters, which reinforces the gut-brain axis theory of ASD etiology and its suggested inflammatory impacts on drug bioavailability through modulation of the brain, gastrointestinal tract and/or hepatic expression of metabolizing enzymes and transporters. Conclusion: Our hypothesis-generating approach identified a broad spectrum of PGx markers that interactively influence RIS exposure in ASD children, which indicated the need for further validation in population PK modeling studies to define polygenic scores for antipsychotic efficacy and safety, which could facilitate personalized therapeutic decision-making in this complex neurodevelopmental condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA